

Building and Utilizing the Wastewater Treatment Plant Network in Kobe City

Hidenobu Wakimoto Kobe, Japan May 16 2018

Table of Contents

- 1. Background
 - Damages caused by the Great Hanshin-Awaji Earthquake
- 2. WWTP Network System
- 3. Effects and Challenges
 - Large-scale WWTP reconstruction
 - Generation of hydrogen sulfide gas
- 4. Summary

Background

Kobe city

Population	1,500,000
Area, km ²	560
Sanitary sewer, km	4,100
Storm sewer, km	660
Total capacity of WWTPs, m ³ /day	700,000
Average WW flow, m ³ /day	500,000

Background

Great Hanshin-Awaji Earthquake (GHAE)

-Jan 17 1995

-Magnitude 7.2

Death	4,600
Missing	2
Injured	15,000
Destroyed houses	67,000
Evacuees, at peak	240,000

Background

WW Infrastructure Damage by GHAE

- Higashi-nada WWTP with 240,000m³/day capacity, the biggest, dysfunctional for 100days.
- Primary treatment only until recovery

Capacity Loss by Quake

WWTPs	Capacity (m ³ /day)	Capacity loss
Higashi-nada	225,000	Down to 0%
Port island	20,000	None
Chubu	78,000	Down to 50%
Suzurandai	44,000	None
Seibu	162,000	Down to 20%
Tarumi	134,000	None
Tamatsu	75,000	None

Aerial view of the Higashi-nada WWTP

Emergency primary sedimentation at sheet-piled canal

WWTPs network system

- Connecting several WWTPs with trunk sewers.
- Transport WW from Not-operational WWTP to operational WWTPs in Emergency.

→ Strengthen resilience

- Use of existing infrastructure to reduce construction cost.
- Routine use of network to seek additional benefit.

Route map and vertical section

Use of existing trunks

Routine Use of Network, example

Rehab of Seibu WWTP, with a cap of 130,000m³/day

- Bypassing WW to the other WWTPs.
- Treatment at Tarumi WWTPs.

→Rehab with no WW inflow ease and reduce cost of works.

Challenges during the operation

- 1. Generation of H_2S
 - Rusting devices (main pomp, screen)
 - Reducing life of the activated carbon in deodorization
- 2. Rapid water level elevation in the trunk sewer
 - Increased Risk of Wet Weather SSO

H₂S at Pump Well of Tarumi WWTP

Cause of H₂S generation

- Kobe built WWTPs network system to increase resilience.
- Existing trunks used to reduce construction cost.
- Planned routine use to seek further benefit.
- Has used NW routinely as planned for rehab of WWTPs.
- Will use NW for rehab of trunk sewers.

Thank you very much for your listening!

