

Cost Benefit Analysis for water network resilience assessment

Werey Caty, Rulleau Bénédicte, CHERITAT ANGELIQUE,

Weber Jean-Marc Strasbourg - Bordeaux, France 15 May 2018

INNOVATIVE SECURE SENSOR NETWORKS AND MODEL-BASED ASSESSMENT TOOLS FOR INCREASED RESILIENCE OF WATER INFRASTRUCTURES

- PROJECT

Context and research question

Water Utilities increasingly interested in the issue of the security of water supply, both in terms of quantity and of quality

Aim of this study = implementation of a cost-benefit analysis (CBA) of resilience scenarios in the face of a threat (crisis)

First application of its kind

Cost Benefit Analysis (CBA)

Objective = assessment tool to measure the negative (*i.e.* costly) and the positive (*i.e.* beneficial) consequences of a policy or a program in monetary values linked with a cost accounting analysis as a decision-making tool

Compare the negative and positive effects of resilience programs regarding a crisis scenario established for 1 water utility on

-the utility Profit & Loss (P&L) account

-the consumers preferences and their Willingness To Pay (WTP)

Resilience programs

-prevention programs with different levels of efficiency and rationality

★3 resilience programs: BAU Business-as-usual (SQ), R+, R++

-taking into account both operating and investment measures

-comparison is done regarding always the BAU situation

-implementing costs methods that will bring assessment of operating and investment values

-resilience programs are then studied from the consumer point of view using Choice Experiment method

Cost Benefit Analysis (CBA)

Steps:

- Describe the crisis scenario
- Define the resilience programs

Going to the activities and investment measures description details

- Establish a generic framework of operating activities and reactions in response to a particular crisis type (previous study of crisis cases)
- Assess the operating and investment values through cost accounting methods
- ✓ Assess the consumers preferences through Choice Experiment method
- Assess the costs and benefits of each resilience program

-in terms of externalities for the consumers

-in terms of impacts on the P&L account for the utility

Put the costs and benefits together and apply NPV

$$VNA = \sum_{t=0}^{n} \frac{B_t}{(1+i)^t} - \sum_{t=0}^{n} \frac{C_t}{(1+i)^t}$$

Objectives:

find the resilience program the most interesting in terms of economic efficiency for the utility and the consumers

rstea

Study area

Eurométropole of Strasbourg

Water utility provides water service to 423,600 inhabitants within 12 municipalities/28 at all 1,083 km of network, 4 waterworks, with a balancing tank 89,980 m³ produced/day

Crisis scenario: Cyberattack

Physical attack+ cyber attack (replication of normal data series)

No compensation of the loss of pressure by the main plant

irstea

Detection of the problem when users call saying they experience water cuts = when the water distribution fails

Resilience programs

- ✓ Statut Quo (SQ / BAU) → reference situation, current resilience at EMS
- ✓ Resilience + (R+)→ resilience improved thanks to RESIWATER best practice tools
- ✓ Resilience ++ (R++) → resilience improved thanks to a better knowledge of the crisis situation (*learning effect* more important) and use of cyberattack detection tool (IT tool & internal training)

Characteristics	aracteristics BAU R+		R++	
Sensitive domestic consumers support	No information on where they are located	Localisation known	Knowledge on how to recognize sensitive consumers and how to react rapidly and appropriately	
Water cut	ater cut 4h 3h		2h	
Water use restriction	6 days	5 days	4 days	
Number of people affected	affected 400,000 inhabitants		1,000 inhabitants	
Communication	Cation On paper at the bottom of the buildings Also in the streets		Also by individualised SMS Consumers educated to be alarm raiser	
New investment and operating measures	-	Applying ResiWater tools	Cyberattack protection by tools and staff	

NVIRONNEMENT DE STRASBOURI

Generic cost framework establishment

➢Resilience process

Cost accounting methods

ÉCOLE NATIONALE DU GÉNIE DE L'EAL ET DE L'ENVIRONNEMENT DE STRASBOURG

- Full costing: direct + indirect expenses
- Homogeneous sections: classify expenses and define an allocation tool to take into account indirect expenses
- Hidden costing: take into account costs that are not in the accountancy or not directly visible in the accounting information system

Generic cost framework establishment on real crisis

Fullcost recovery	Unit	Opantity	Unit cost	Total cost (in €)			
Pipe-burst EMS	Cim	Annard	(in €)				
Using material	piece	221	6,53	1 442,19			
Motorized machines,							
vehicles: truck and	hours	1	67,75	135,5			
excavator							
Costs for staff	hours	148,5	39,5	5 858,54			
Costs for staff	hours	100	27,4	2740			
(overtimes)				1017632			
1 otal		7410	0.2	101/0,23			
Total divect costs	mo	/410	0,2	11659.23			
Total difect costs	Hours of			11030,20			
Allocation rate	direct						
	staff			0.00025			
Overheads	€			10 000 000			
Total indirect costs	€			2 483			
Full cost recovery							
phase (in €)	€			/ 14 142			
Table 14:	Full co	osts reco	very ph	ase EMS			
			• •				
			1/2				
			<u> </u>				
			Total cos	Total costs extracted			
Selected overheads	of the utili	ty	from the	from the administrative			
			account	(in €)			
Maintenance on mov	ahle good	s (movable					
wantenance on mov	able good	s (movable		41905,34			
material)			_				
Maintenance on mov	able good	s (other		18033 51			
material)				10055,51			
Maintenance on prop	perty asset	s (network)		818595,05			
Maintenance on pro	perty asset	s (streets					
excavation)				313655,65			
Depresistion charge	Imotorizor	(machinas)		1256 42			
Depreciation charge	(motorized	i machines)	_	1550,45			
Depreciation charge	(vehicles)			257566,25			
Maintenance and litt	le equipme	ent supplies		7127 60			
(others)		/42/,08					
Office supplies		8454.31					
Non storable supplie		9173 / 9					
Other meterial and	,	125527.04					
other material and s	/	125527,94					
Other material and s		322442,23					
Gas		132357,34					
Total overheads (in £)			10025257			
. etar overneads (in e	/			10010101			

Table 13: Work order extract

/	Work Order n°81563 (OT): pipes repair	Hours registered	Unit cost (hourly rate in €)	Total cost (in €)
	Task execution (Job-category			
	C: technicians)	65,5	21,9	1 434,45
	Excavator	4	34,86	139,44
	Truck	5	45,73	228,65
	Total	74,5		1 802,54
	Allocatio	n rata:		

expressing indirect costs in staff time Non registered among Cost (hourly costs

Other costs	time (estimated)	overtimes	(hourly rate in €)	costs (in €)
Job category				
A: managers	65	26	35,61	2 315
Job category				
B: senior				
technician	65	30	26,79	1 741
Total	130	56		4 0 5 6

Table 15: Costs for other staff categories

Assessing the operating and investment values on the resilience program through cost accounting methods

	Re	covery p	hase ope	erating co	sts				Post-c	risis phas	e operatin	g costs	
Expenses €	Quantity (staff, m ^s)	Time (h)	Unit standard cost plus additional	On call allowance	Overheads€	Fullcost€		Expenses €	Quantity (staff, m ^s)	Time (h)	Unit standard cost plus additional over times€	Overheads €	Fullcost€
Rehabilitatio n of the information system of the	2	18	35.61		141	1423		Cold debriefing	15 (3 ING+ 1 senior TECH +11 TECH)	4	35,61+26, 79+22,97	170,0	1715,1
supervisor from	2	10	33,01		141	1425		RETEX redaction	1	14	35,61	55	553
Polygone waterstation Manually								onsis management planning updation	1	14	35,61	55	553
water tank during the IS rehabilitation time	2	10+8	45,94+ 22,97	16,071	71	714	(Delays in daily staff works due to their involvement during the	37	Н	idden cost	ts	1 869,82
Other samples and water analysis	40		70	-	308	3108		crisis Total €					4 691,7
 Total€						5245		Cost as	ssessment e	examples o	f the post-c	risis phase fo	or R+
Cost assessment examples of the recovery phase for R^{++}													

Total time spend by each expert during crisis period

rstea

Assessment of the internal costs/benefits linked to the impacts of resilience programs on the utility

In R+ and R++, operating costs decrease but investment costs increase and we know that resilience is better which proves that an increase in investment tools go to pair with a resilience improvement

	Resilience phase		SQ	R+	R+ // SQ	
→R++: internal benefit	Prevention	Investment (depreciation value)	90 440	105 440	15 000	Increase in cost
		Operating	1 000	37 785	36 785	
		Water losses	2 933	2 200	-733	Decrease in cost
7	Emergency	Cyberattack time detection	400	358	-41	Decrease in cost
Coloulation avamples	Lineigency	Water use restriction	520 547	318 247	-202 300	Decrease in cost
Calculation examples?		Total operating	523 880	320 805	-203 075	Decrease in cost
	Recovery	Operating	5 2 4 5	5 2 4 5	0	
	Post-crisis	Operating	3 770	4 692	921	Increase in cost
		Total investment	90 440	105 440	15 000	Increase in cost
Total costs and benefits for>	Total	Total operating	533 895	368 527	-165 368	Decrease in cost
R+		Benefit/cost TOTAL €			-150 368	<u>Benefit</u>
	Resilience phase		SQ	R++	R++ // SQ	
Total costs and benefits for		Total Investissement	90 440	202 143	111 703	Increase in cost
R++ →	Totaux	Total fonctionnement	533 895	367 239	-166 657	Decrease in cost
		Gain/surcoût TOTAL €			-54 954	Benefit

Assessment of internal costs/benefits linked to the impacts of resilience programs on the utility

Synthesis internal annual costs for the 3 resilience programs

Strasbourg.eu

Assess the externalities linked to the resilience programs on the consumers

>Assessment of residents' preferences and estimation of their willingness to pay for the resilience measures using the **Choice Experiment Method**

 Theoretical framework: consumers derive satisfaction not from a good in itself but from its "attributes" which are defined as the objective features of the good considered relevant by the consumers

Considering the attributes of each resilience program ie their characteristics

	Characteristics	BAU	R+	R++
Survey Questionnaire	Care of sensitive	Partial	Exhaustive	Exhaustive and
	domestic			appropriate to
	consumers			the needs of
				those concerned
	Duration of water cuts	4h	3h	2h
	Water use restriction	6 days	5 days	4 days
	Number of people impacted	400,000 inhabitants	100,000 inhabitants	1,000 inhabitants
	Contribution	0€	X€	XX €

Steps of the Choice Experiment method

- 1. Define attributes and assign them levels
 - Relevant attributes: (1) the number of people affected; (2) the duration of the water cut as a result of the attack; (3) the duration of the water-use restrictions; ...
 - Monetary attribute in order to estimate welfare changes: the cost expressed as a contribution
- 2. Combine the attributes in hypothetical scenarios
- 3. Construct the valuation questions (called "choice sets") combined with a questionnaire
 - The reference situation: the utility addresses impacts of the cyber-attack on an *ad hoc* basis (current situation)
 - 2 alternative scenarios: implementation of measures intended to improve the system resilience
- 4. Present the choice sets to the respondents inquired in order to disclose their preferences
 - Fixed number of choice sets: 5 per respondent
- 5. Ask them to choose the alternative they prefer and the one they like least

6. Conduct an econometric analysis of answers

irstea

E ÉCOLE NATIONALE DU GÉNIE DE L'EAU ET DE L'ENVIRONNEMENT DE STRASBOURG

Strasbourg.eu

NGEES

Example of choice set	of a	Alternative scenarios		Reference situation	
		Option A	Option B	Option C (without additional prevention measure)	
	Number of people impacted	400,000	200,000	400,000	
Characteristics	Duration of water cuts	3 hours	4 hours	4 hours	
or the options	Duration of water use restriction (for drinking and cooking)	6 days	5 days	6 days	
	Sensitive domestic consumers support	Partial	Exhaustive	Partial	
ea	Cost per household (paid at once)	€10	€50	€0	

	Option A	Option B	Option C
What do you like the most?	0	0	0
What do you like the least?	0	0	0

Respondents' choices

Outline of the questionnaire

Questionnaire made up of 6 parts:

- 1. Environment generally speaking
- 2. Water consumption
- 3. Perception of the water quality in EMS and health risk associated;
- 4. Perception of the water Utility performance and risks
- 5. Valuation questions and follow-up questions which are designed to explore the reasons for responses
 - Before the choice sets, presentation of a scenario which reminds of the current situation, description the concrete resilience measures, reminds of the budget constraint, etc.
- 6. Socio-economic questions

Has been tested and finally version is currently implemented

Espected results

Conclusion

Scientific challenge

First CBA on water networks resilience

- Handful of studies dealing the valuation of benefits of infrastructure resilience
- Methodological improvements in the comprehension and appreciation of consumers' preferences

Mixing an accounting full-costing approach for the assessment of internal costs and an economic valuation of consumers' willingness to pay

Very informative

Operational issue

Add a very useful decision tool to the existing approaches

"Cost Benefit Analysis for water network resilience assessment"

Thank you for your attention

caty.werey@irstea.fr

benedicte.rulleau@irstea.fr

