

How can we build reliable and resilient surface water flood management?

James Webber, Guangtao Fu and David Butler Exeter, United Kingdom 16th May 2018

Overview

- 1. Surface water flooding
- 2. Measuring reliability and resilience
- 3. Fast flood analysis to analyse urban resilience
- 4. Reliability and resilience in a UK case study

Overview

1. Surface water flooding

- 2. Measuring reliability and resilience
- 3. Fast flood analysis to analyse urban resilience
- 4. Reliability and resilience in a UK case study

Surface water flooding in the UK costs 0.25 to 0.50 Billion GBP per year

Extreme surface water flooding is a global problem

Future surface water floods are predicted to be more likely and more extreme

Many interventions exist, but current selection neglects extreme events

Overview

1. Surface water flooding

2. Measuring reliability and resilience

- 3. Fast flood analysis to analyse urban resilience
- 4. Reliability and resilience in a UK case study

Current management techniques apply Reliability metrics to assess performance

- Reliability aims to minimise failures during normal (design standard) loading.
- It is typically expressed in terms of failure probability.

Reliability describes minimising failure across a specified design standard

Measuring Reliability

- Reliability is typically described as up to a design standard threshold.
- For example a '1 in X year' event.

Resilience aims to manage extreme events

Resilience minimises failure magnitude and duration of extreme events

Measuring Resilience

- Resilience is measured through calculating the magnitude and duration of failure across extreme events.
- Measuring resilience requires an approach capable of analysing high magnitude events,
- Simulating extreme rainfall this can be <u>very</u> computationally demanding.

Overview

- 1. Surface water flooding
- 2. Measuring reliability and resilience
- 3. Fast flood analysis to analyse urban resilience
- 4. Reliability and resilience in a UK case study

Fast Flood Assessment for analysing resilience

Fast flood assessment is applied as a screening method for decision support

1. Simple inputs to represent urban area

Urban catchments are represented using simple, easy to access data

2. Fast analysis using cellular automata models

Simplified representation of options results in very fast model speed

3. Detailed economic analysis using GIS

Costs are calculated by overlaying peak flood depth across properties

Overview

- 1. Surface water flooding
- 2. Measuring reliability and resilience
- 3. Fast flood analysis to analyse urban resilience
- 4. Reliability and resilience in a UK case study

Reliability and Resilience in a UK case study

0.5

0.25

- 9 intervention strategies
- 2, 5, 10, 20, 30, 50, 100, 200 & 1000 year events
- Analysis of reliability and resilience through calculating failure cost (magnitude and duration) and likelihood.

Case study of a 1 km by 1 km UK urban catchment

Performance curves visualise many scenarios.

Current planning is generally insufficient for future challenges:

Performance during a high probability event is <u>not</u> an indicator of performance during extreme scenarios.

To build reliability and resilience we need to analyse the full range of future challenges and novel solutions:

Fast analysis techniques provide a method to include reliability and resilience in strategic design.

For more information, please contact James Webber: jw616@exeter.ac.uk