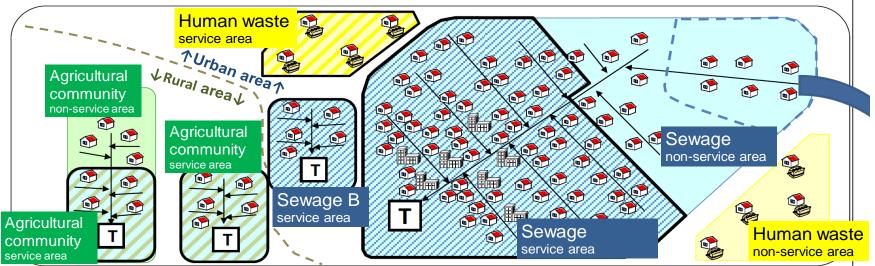


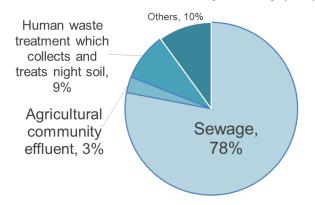
Optimization method for sustainable wastewater treatment systems in the population declining society

Takeshi Ishikawa, Ryo Matsumoto, Tsuyako Fujii, Hiromasa Yamashita National Institute for Land and Infrastructure Management, Japan 17 May 2018



Water Environment Federation

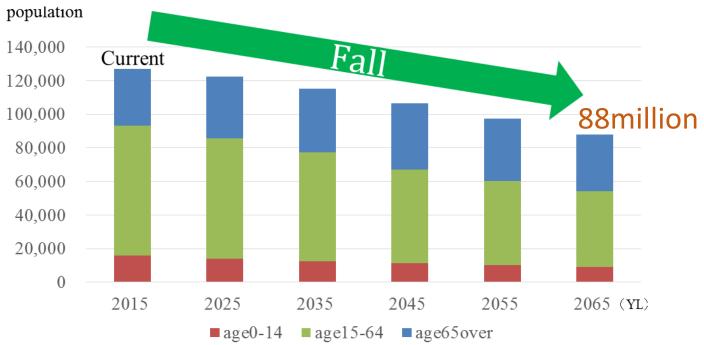
the water quality people®


Introduction (Wastewater treatment of Japan)

Local governments have adopted the waste water treatment system, which are suitable for their regional condition.

- The wastewater treatment service ratio is 90.4%.
- Service population is about 115 million people (Total population 127million)

Distribution(population)
of wastewater treatment system in japan(%)



Introduction (Population declining of Japan)

The overall population of Japan is expected to fall from the present level of around 130 million to around 88 million in 2065.

The service population of wastewater treatment and then its sewage inflow also will decrease.

The sustainability of the wastewater treatment service is now on crisis.

- The operation efficiency of the facilities could be decreased.
- The revenue from user-fee would also be decreased.
- The shortage of financial resources
- The shortage of technical staff
- Demand for the reconstruction / renewal of aged facilities in the near future.....

It's necessary to introduce sustainable wastewater treatment system under the population declining society.

Our research

The optimization method of wastewater treatment systems

- Collected and created cost functions
- Clarified the relation between the operating rate and the maintenance cost
- Developed the estimation method of the maintenance cost in population declining society
- Evaluated for technical and environmental points

Target facilities in this research

Target on the small to medium-sized treatment plants which would be sensitively affected due to decrease in inflow.

Facility (Occupy approximately 90% of the total)	Capacity (Small to medium)	Process (Those of accounted for about 80%)
Sewerage (piping, urban area)	10,000 m ³ / day or less	Oxidation ditch process (OD), Conventional activated sludge process (CAS)
Agricultural community effluent (piping, rural area)	1,000 m ³ / day or less	JARUS- I,Ⅲ,XI,XII,XIV (Japanese standard)
Human waste treatment (non-piping)	100kl/day or less	All

The optimization method of wastewater treatment systems(outline)

Basic survey and setting prerequisites

Basic information (population, inflow, service situation etc.)

Setting representative integration scenarios

• (no integration, full integration, partial integration)

Comparison of economics

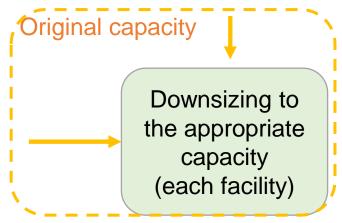
- Calculate life cycle cost(consider operating rate)
- Confirm the most economical one

Technical and environmental evaluation

• Facility capacity, Energy consumption etc.

Comprehensive evaluation

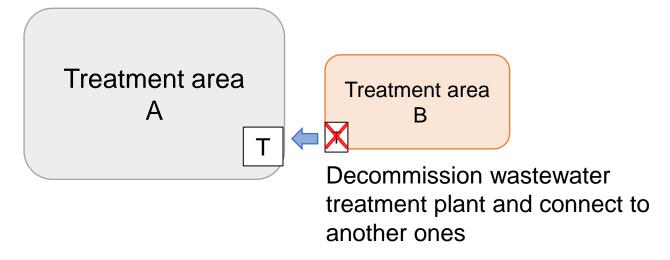
- Select the integration scenario
 - → Sustainable wastewater treatment system



Representative integration scenario 1 No integration

(Downsizing separately)

Efficiency could be improved by reducting the facility size (downsizing) to appropriate facility capacity based on the future inflow prediction.



Representative integration scenario 2 Full integration

(Unify treatment areas)

Efficiency could be improved by decommissioning one of treatment facility and unifying treatment areas.

Representative integration scenario 3

Partial integration

(Unify sludge treatment function)

Wastewater treatment plant which accept other sludge

water treatment Sludge

treatment

Decommission only sludge treatment facilities

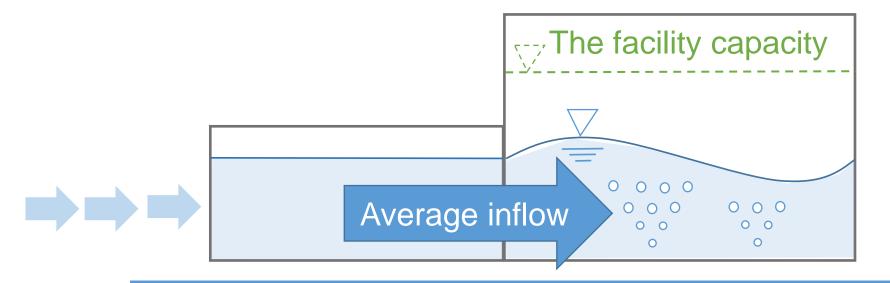
Efficiency could be improved by decommissioning the function of sludge treatment in one of treatment facility and unifying it.

Water Environment Federation

Collection and creation of cost functions

(some example)

1.reconstruction / renewal cost (thousand JPY	Collection	laliu	Creation of	603 1	10116110113	(some example)
CAS	f	acilities, equ	ipment	variable (x)	usable range	function(y)
CAS					_	`
Sewerage CAS mechanical ma/day 1,000~10,000m³/day y = 72,734,8026 y = 978,738 y = 14,680,804 y = 13,800,00 (x/1,000) 0.42 x = 10,000				m ³ /day	10,000~50,000m ³ /day	$y = 1,550,000 (x/1,000)^{0.58}$ ×(103.3/101.5)
overall		CAS	mechanical	•		$y = 72,734x^{0.26}$
OD			mechanical(water treatment)	,	, ,	
OD	coworago		•overall:	•		
agricultural community effluent human waste treatment pipe Construction Gasewerage CAS OD OD OD OD OD OD OD OVERAII Name waste treatment Overall OD OD OD OVERAII OV	Sewerage		●overall※	m³/day	300 ∼ 1,300m³/day	
agricultural community effluent human waste treatment pretreatment treatment pretreatment pretreatm		OD	•overall※	m ³ /day	•	×(103.3/101.5)
Numan waste treatment Pretreatment Pretr			mechanical(water treatment)	m ³ /day	1,000~10,000m ³ /day	$y = 1,580x^{0.66}$
Pretreatment Pret	agricultural community effluent		•overall	person	-	ř
Pretreatment Pret	human wasto	over all	standard process	kl/day	20~100kl/day	$y = 237,636x^{0.4571}$
pipe construction operation egravity system operation described in the past document m m m m m m m m m m m m m m m m m m m		•	standard process	kl/day	20~100kl/day	
Pipe Constitution Pressurized sewer Semall scale Sewerage Pressurized sewer Sewerage Sewerage Cas Sewerage Cas Sewerage Pressurized sewer Pressurized sewer Sewerage Pressurized sewer Pressuriz			•manhole type pumping station	point	-	y =9,200x
Sewerage CAS OD Overall Ov	nino		•gravity system	m	-	y =63x
2.maintenance cost [thousand JPY/year] Sewerage CAS overall overall OD overall m³/day 1,000~10,000m³/day 10,000m³/day y = 18,800 (x/1000) 0.69 x(103.3/101.5) 300~1,300m³/day y = 19,000 (x/1000) 0.78 y = 2,468x ^{0.382} y = 18,800 (x/1000) 0.69 x(103.3/101.5) y = 19,000 (x/1000) 0.78 y = 28,600 (x/1000) 0.58 x(103.3/101.5) y = 28,600 (x/1000) 0.58 x(103.3/101.5) y = 37.811x ^{0.6835} over all pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall pretreatment equipment overall overall pretreatment equipment overall overall pretreatment equipment overall overall overall pretreatment equipment overall overall pretreatment equipment overall overall overall pretreatment equipment overall overall overall overall pretreatment equipment overall overall overall overall pretreatment equipment overall o	pipe	CONSTRUCTION	•pressurized sewer	m	-	y =45x
CAS			•small scale	m	-	y =56x
The function described in the past document Sewerage OAS	2.maintenance cost	t [thousand	IJPY/year]			
Sewerage overall m³/day 10,000m³/day 2000m³/day 1,400~10,000m³/day 1,400~10,000m³/day 20~100kl/day y = 18,800 (x/1000) 0.78 20.78 20.78 20.78 20.78 20.700 20.78 20.700kl/day y = 19,000 (x/1000) 0.78 20.700 20.78 20.700kl/day y = 28,600 (x/1000) 0.58 x(103.3/101.5) 20.78 20.700kl/day y = 28,600 (x/1000) 0.58 x(103.3/101.5) 20.700 20.700kl/day y = 37.811x ^{0.6835} 20.700kl/day y = 17,845x ^{0.57} 20.700kl/day y = 17,845x ^{0.57} 20.700kl/day y = 6,716x ^{0.2692} 20.700kl/day y = 220x 20.700kl/day y = 20.060x 20.000x y = 0.060x 20.000x y = 0.060x 20.000x y = 0.031x x = 0.000x y = 0.031x x = 0.000x x = 0.000x </td <td></td> <td>CAC</td> <td>overall</td> <td>m³/day</td> <td>1,000~10,000m³/day</td> <td>$y = 2,468x^{0.382}$</td>		CAC	overall	m ³ /day	1,000~10,000m ³ /day	$y = 2,468x^{0.382}$
OD •overall m³/day 1,400~10,000m³/day y = 28,600 (x/1000) 0.58 x(103.3/101.5)	001404040	CAS	•overall m [∞] /day	10,000m³/day ∼	$y = 18,800 (x/1000)^{0.69} \times (103.3/101.5)$	
agricultural community effluent overall person - y = 37.811x ^{0.6835}	sewerage	OD	●overall m³/day	300~1,300m ³ /day	$y = 19,000 (x/1000)^{0.78}$	
human waste treatment overall overall overall				1,400~10,000m ³ /day	$y = 28,600 (x/1000)^{0.58} \times (103.3/101.5)$	
treatment pretreatment equipment overall pretreatment equipment equip	agricultural commur	nity effluent	•overall	person	-	$y = 37.811x^{0.6835}$
treatment pretreatment equipment overall pretreatment equipment overall pipe overall pipe (standard) point overall pipe (standard) point overall pipe (standard) point overall pipe (small scale) pretreatment pretreatment equipment overall pretreatment p	human wasto	over all	overall	kl/day	20~100kl/day	$y = 17,845x^{0.57}$
•manhole type pumping station point - y =220x •pipe (standard) m - y =0.060x •pipe (small scale) m - y =0.031x •The function described in the past document		pretreatment	overall	kl/day	20~100kl/day	$y = 6,716x^{0.2692}$
pipe ●pipe (standard) m - y =0.060x ●pipe (small scale) m - y =0.031x			•manhole type pumping station	point	-	y =220x
•pipe (small scale) m - y =0.031x •The function described in the past document					-	
·	1-1-0		•pipe (small scale)	m	-	y =0.031x
*Including structures, machinery and electrical equipment	●The function described in the past document					
	※Including structures, machin	ery and electrical	equipment			



The relation between the operating rate and the maintenance cost

Operating rate x

= (Average inflow volume) (m³/day)

/ (The facility capacity) (m³/day)

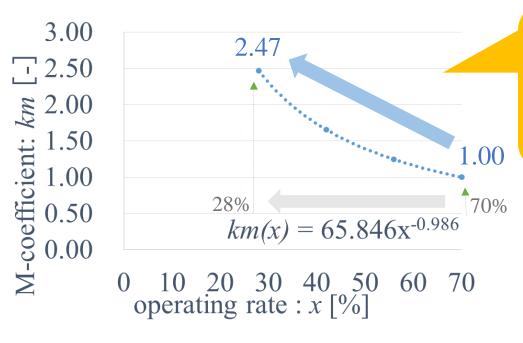
The relation between the operating rate and the maintenance cost

- Arranged the maintenance cost as M-coefficient "km".
- "km" indicates the maintenance cost per unit inflow at a certain operating rate.

Maintenance cost

per unit inflow
(certain operating rate)

Referance value(Fixed)
(ones at max operating rate)


The larger "km" indicates the more inefficient operation situation.

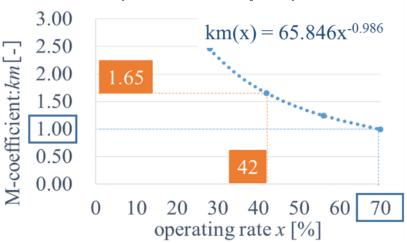
"km" is increased as the operating rate decline.

The maintenance cost doesn't decrease, even if the inflow decreases. (km isn't constant)

Difficult to control aeration(single channel) etc.

Fig. Relation between the operating rate and M-coefficient (Sewerage:OD)

The lower the operation rate, the worse the operation efficiency of the facility.



The future maintenance cost estimation(an example)

Condition	
Facility type	Sewerage(OD)
Current maintenance cost	65,000,000JPY/year
Current inflow	1,000,000m ³ /year
Current operating rate	70%
Future inflow (estimate)	600,000m ³ /year
Future operating rate	42%

- <u>km</u>'s ratio (current and future) 1.65 / 1.00 = 1.65
- Future maintenance cost(per unit inflow) 65 x 1.65 = 107.25 JPY / m³
- Future maintenance cost(total) $107.25 \times 600,000 = 64,350,000$ JPY / year

Reference: Estimated results without considering operating rate

Big difference

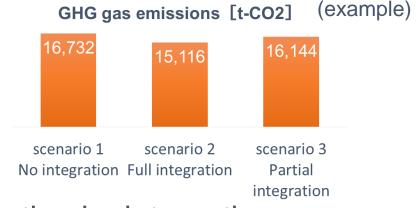
65(using current unit of maintenance cost) \times 600,000 = 39,000,000 JPY / year

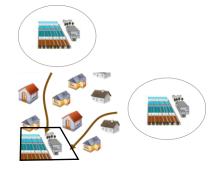
The cost estimation would be more accurate by this method.

Some important points for the examination in case of the integration is listed for technical evaluation.

Sort	problems that must be checked
	Whether the flow capacity is satisfied or not
Pipe	Whether the flow velocity is satisfied or not
	How often the pipe cleaning is required
pumping	Whether the pumping capacity
station	is satisfied or not
Wastewater	Whether the capacity is satisfied or not
treatment plant	In the case of acceptance of night soil etc., its receiving ratio

In particular, Notice when the ratio exceeds 10%.




Environmental evaluation (some example)

 Calculation the energy consumption and greenhouse gas(GHG) emissions from the power consumption.

 The merit of sludge concentration by integration increase of digested gas generation amount, etc.

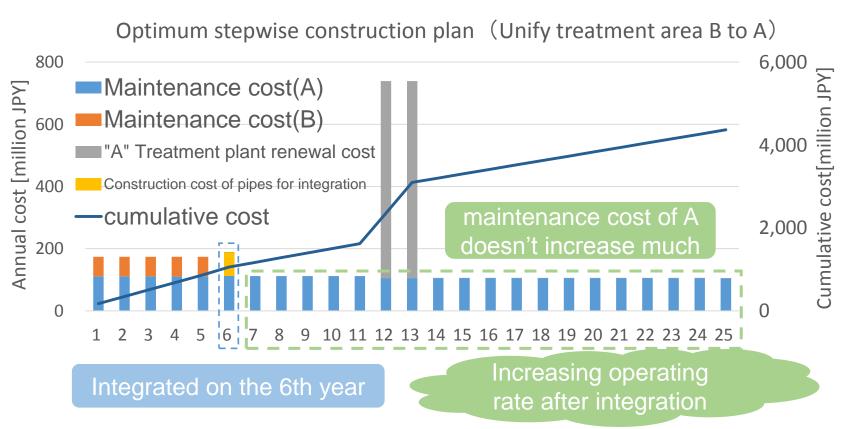
E.g. Collect of sludge by integration.

Comprehensive evaluation by optimization method(example)

Factors	scenario 1	scenario 2	scenario 3	
Overview	no integration	full integration	partial integration	
Life cycle cost [million JPY]	5,879	4,368	5,016	
Technological evaluation	-	-	the capacity of the treatment plant etc.	
Environmental evaluation				
Energy consumption [Mega joules]	120 million	109 million	116 million	
GHG emissions [t-CO ₂]	16,732	15,116	16,144	
		441		

Evaluation results

most efficient


In this example, Scenario2 (full integration) was found to be the most efficient.

Considering the renewal schedule of each facility(treatment plant, pipes of A,B) for the selected scenario, optimum stepwise construction plan was developed.

Summary

- Developed into the coefficients from the relation between the operating rate and the maintenance cost. It enable us to estimate the maintenance cost in the future.
- Confirmed the tendency that the maintenance cost per unit inflow "km" increase as the operating rate declines each facilities.
- Developed <u>the optimization method for</u> <u>sustainable wastewater treatment systems</u> in the <u>population declining society</u>.

Thank you very much

for your attention!