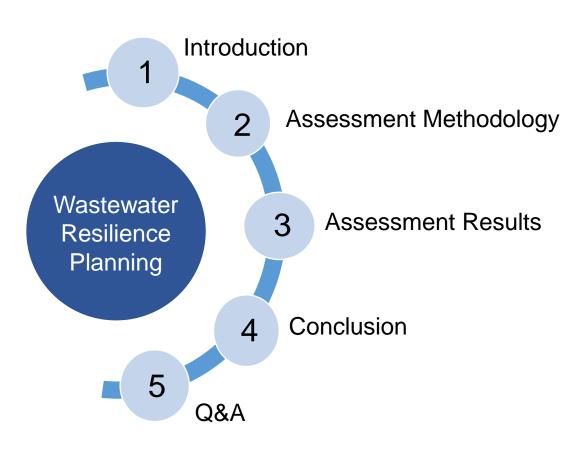


Wastewater Resilience Planning


Kishen Prathivadi, P.E., PMP Half Moon Bay, USA May 17, 2018

Presentation Outline

6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

- Kishen Prathivadi, P.E., PMP
 Engineering and Construction Contracts Manager
 Sewer Authority Mid-Coastside, Half Moon Bay, CA
- Timothy Monahan, P.E. (Co-author)
 Project Manager
 SRT Consultants, Inc. San Francisco, CA

The Sewer Authority Mid-Coastside (SAM) is a coalition of three entities on California's Pacific coast 30 miles (48 km) south of San Francisco:

- City of Half Moon Bay
- Granada Community Services District
- Montara Water and Sanitary District

SAM provides wastewater treatment services and contract wastewater collection services for approximately 30,000 people in these 6 communities:

- City of Half Moon Bay
- El Granada
- Miramar
- Montara
- Moss Beach
- Princeton by the Sea

SAM's assets:

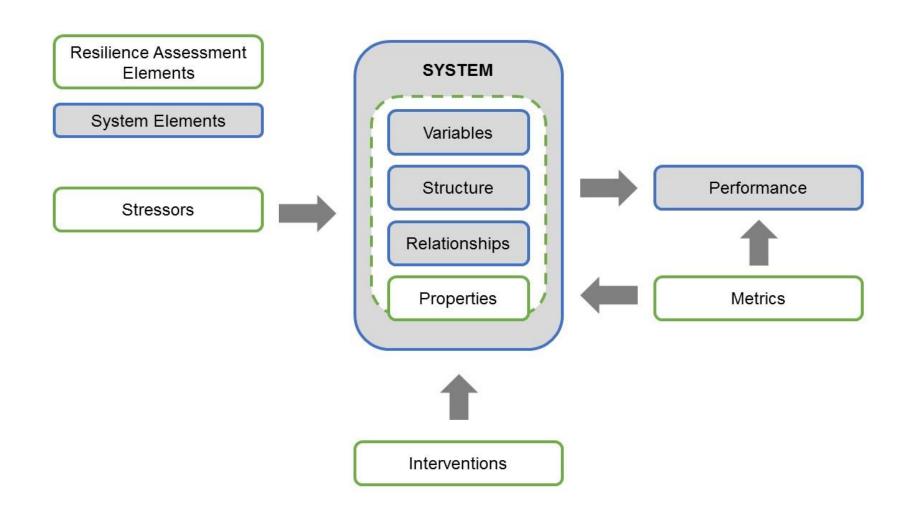
- 3 regional wastewater pumping stations
- 6.5 miles (10.5 km) of force mains and interceptors
- 1 regional wastewater treatment plant
- 1 ocean outfall

- Water agencies in the United States are required to prepare vulnerability assessment per the Environmental Protection Agency
- Although not required, wastewater agencies prepare similar assessments to reduce risk of service failures
- Resilience planning is the product of these assessments

Resilience in ecology:

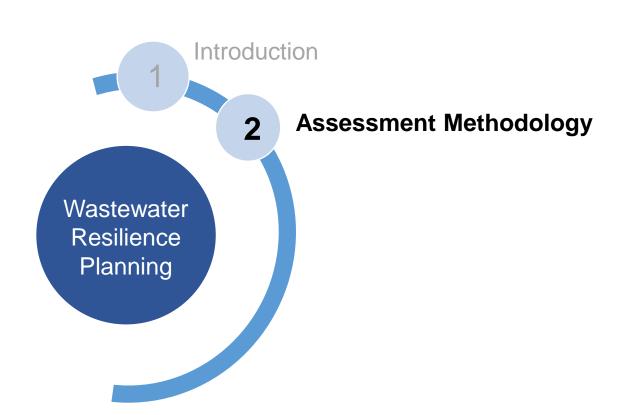
Capacity of an ecosystem to survive, adapt, and grow in the face of unforeseen changes

Resilience in engineered systems:


Capacity of the system to absorb disturbance while undergoing change so as to retain the same function, structure, identity, and response mechanisms

6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

Stressors to SAM's WWTP Assets


- Malevolent: sabotage of physical and cyber assets
- Natural: flooding, wild fires, earthquake
- Electro-mechanical failure
 General failure
 Lack of spare parts
 Age

6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

Assessment Methodology

Performance Goals of SAM's WWTP:

Average dry weather flow 4 MGD (18,200 m3/day)

Peak wet weather capacity – 15 MGD (68,200 m3/day)

Challenges to Meeting Performance Goals

Lack of emergency storage

Lack of redundancy

Aging infrastructure

Evaluation of SAM's Assets

- Assets were evaluated based on their criticality to the overall performance of the WWTP and pump stations
- Evaluation identified assets that if fail could result in:
 - Prolonged or widespread interruption of service
 - Degradation of other systems
 - Injuries / fatalities
 - Detrimental economic impact to SAM or the community
 - Detrimental environmental impact

Age of SAM's Assets

Asset Type	Useful Life (years)	Current Age (years)	
Pipelines	50	32	
Structures	30 to 50	16 to 32	
Process Equipment	15 to 20	30	
Auxiliary Equipment	10 to 15	30	

Probability of Failure

Rate of occurrence:	Once in 10 years	Once in 5-10 years	Once in 3-5 years	Once in 1-3 years	Less than once/yr.
Probability of failure rating:	0.5	2.5	5.0	7.5	10.0

Consequence of Failure

Three criteria were considered:

- 1. Impact on the WWTP effluent quality
- 2. Impact on the WWTP treatment capacity
- 3. Ability to return the equipment to service (including staff)

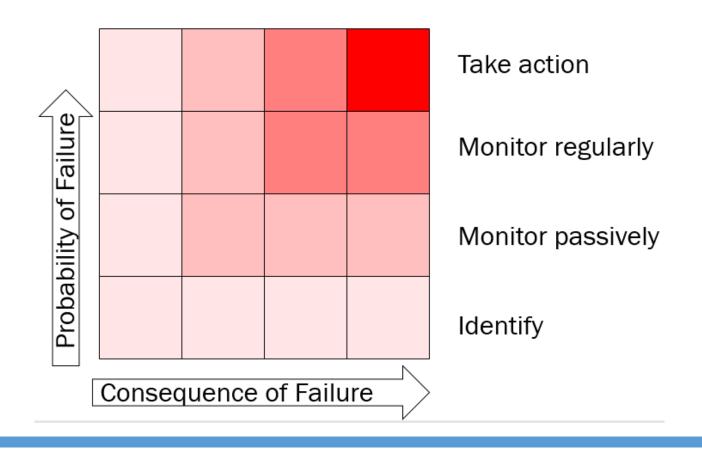
Consequence of Failure

Criteria	Relative Weight	Anticipated Consequences		
Effluent quality	33%	none	Mid-term Non-compliance	Immediate Non-compliance
Treatment capacity	33%	none	No more redundancy or peak capacity <15 MGD	Failed process or average capacity <4 MGD
Ability to return to service	34%	Immediate repair replacement possible	Repair possible before treatment is impacted	No contingency plan preparedness uncertain
Criteria rating: 1 = negligible		1 = negligible	5 = low	10 = severe
Consequence rating: Sum of the three weighted criteria ratings			teria ratings	

Determining Risk Score

Risk Score = Probability of Failure Rating x Consequence Rating Example:

Asset	Probability of Failure Rating	Consequence of failure			C -11-2-11-11-11-11-11-11-11-11-11-11-11-1	
		Quality	Capacity	Service- ability	Consequence of Failure Rating	Risk Score
		33%	33%	34%		
Belt filter press	10	5	10	10	8.4	84


Risk Score = $10 \times (5 \times 0.333 + 10 \times 0.333 + 10 \times 0.344) = 84$

Risk Scores Used to Prioritize Projects

6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

Assessment Results

- 50 major projects identified
- Projects ranked according to Risk Score from lowest to highest
- Projects further prioritized:

Mandatory – regulatory or safety driven

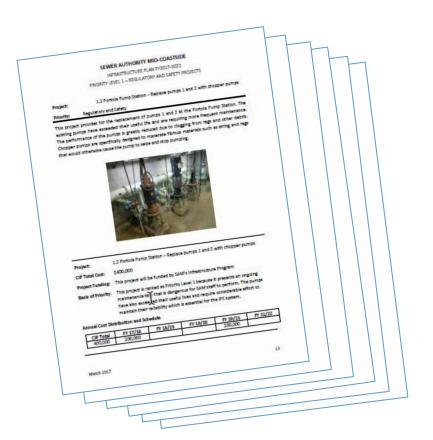
must do

Replacement and Rehabilitation

must be done

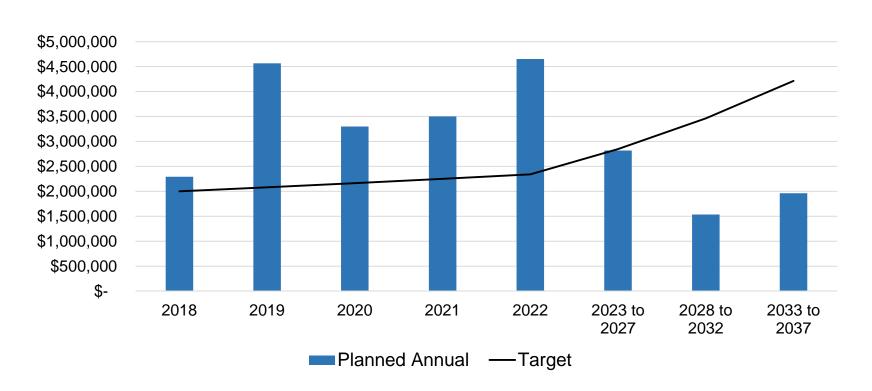
Sustainability, energy reduction, optimization

should be done

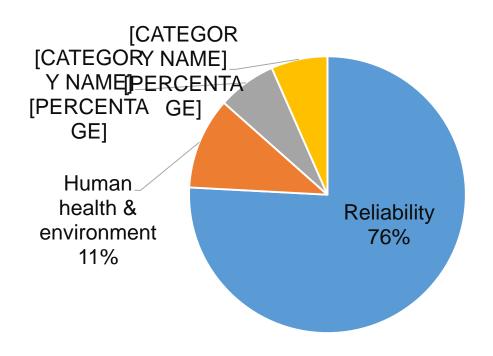


Assessment Results

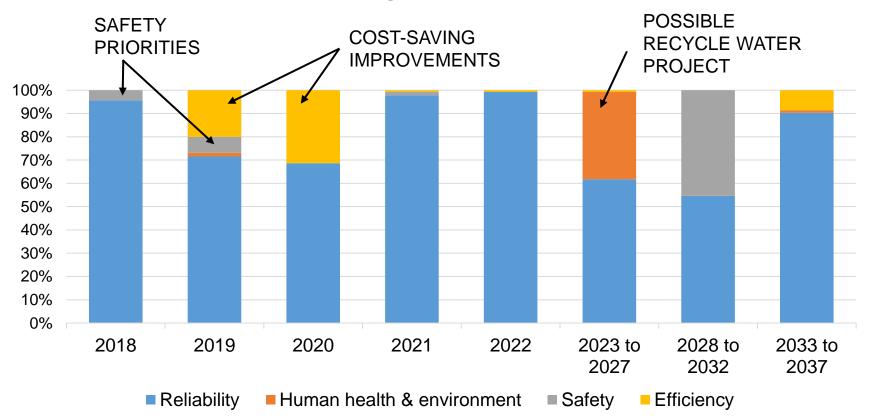
- 5 year capital improvement plan
- \$22.0 million in projects
- Update each year
- Proactive funding
- Risk reduction



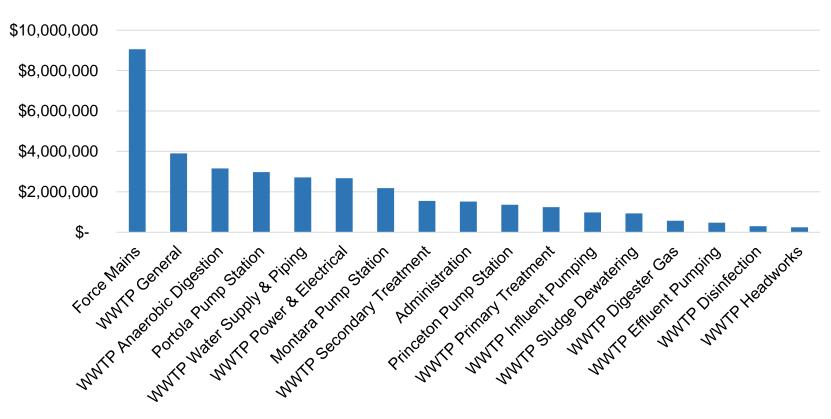
20-year CIP – total annual spending \$35.8 million over 20 years



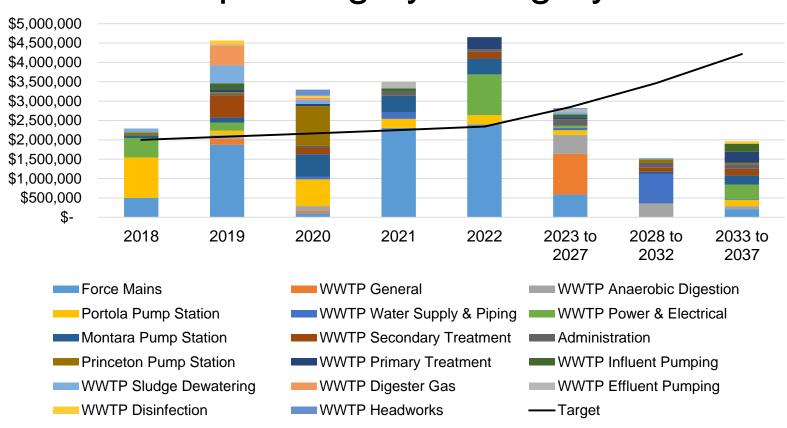
Spending by Objective \$35.8 million over 20 years



Spending by Objective



Spending by Category



Spending by Category

SAM's Wastewater Resilience Projects

Wastewater Pumping Station Rehabilitation

6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

SAM's Wastewater Resilience Projects

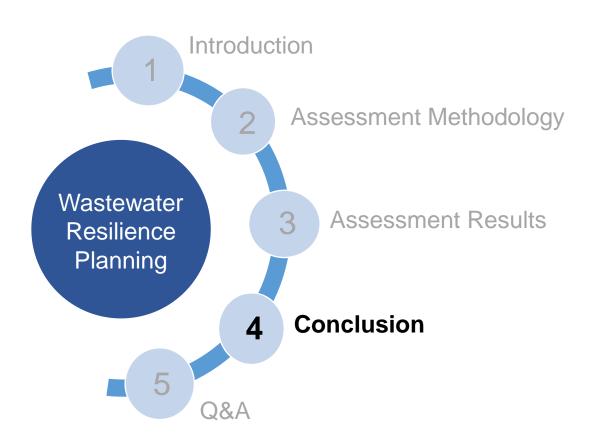
Force Main Replacement

SAM's Wastewater Resilience Projects Force Main By-Pass Improvements

SAM's Wastewater Resilience Projects Interceptor Repairs and CIPP Lining

SAM's Wastewater Resilience Projects

Wet Weather Storage Facility



6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

Conclusion

Wastewater resilience planning:

- Improves safety
- Improves reliability
- Reduces risk of failure
- Allows systematic modernization of facilities
- Prioritizes competing projects
- Allows more predictable funding vs reactionary spending

6th EWA / JSWA / WEF Joint Conference "The Resilience of the Water Sector" 15-18 May 2018, Munich, Germany

Q&A