

Evaluating city resilience and services cascade effects in flooding scenarios

João Barreiro, Ruth Lopes, <u>Filipa Ferreira</u>, Rita Brito, José Saldanha Matos

Lisbon, Portugal

1. Introduction URBAN RESILIENCE

"Urban resilience is the capacity of <u>individuals</u>, <u>communities</u>, <u>institutions</u>, <u>businesses</u>, <u>and systems</u> within a city to **survive**, **adapt**, and **grow** no matter what kinds of chronic stresses and acute shocks they experience, and even **transform** when conditions require it."

Arup & The Rockefeller Foundation, 2015

URBAN DRAINAGE, FLOODS AND CLIMATE CHANGE

Extreme Precipitation Events

- High precipitation intensities
- Concentrated in time and space
- Duration of minutes or few hours

- Lack of drainage infrastructures
- Limited hydraulic capacity of the infrastructures
- Reduced capacity of inlets
- Polution loads and restrictions on discharges

Climate Change

- Increase of the intensity and frequency of extreme events
- Increase of the sea level

2. Methodology

URBAN RESILIENCE ON THE SCOPE OF URBAN FLOODS

Application of dynamic 1D/2D models to determine flooded areas and the severity of the floods

Identification of interdependencies, impacts and cascading effects, taking into account several multisector services

Evaluation of urban resilience, trough simple quantifiable indicators and a resilience index

3. Lisbon Downtown Case Study

DEFINITION AND CHARACTERIZATION OF THE STUDY AREA

Sector	Service	Infrastructures	
Water Sector	Water Distribution	District Metering Areas	
	Urban Drainage	Wastewater Pumping Stations	
		Overflows	
Power Sector	Secondary Power Distribution	Power substation	
Mobility Sector	Subway	Subway stations	
		METRO Power Substation	
		Control Room	
	Public Transport Hubs	Hubs	
	Bus	Bus Routes	
	Traffic Management	Traffic Control Room	
Waste Sector	Unselective Municipal Waste Collection	Routes	
Telecommunication Sector	Mobile Telecom	Analysed only as a service provider	
Environmental Sector	Receiver Waters	Tagus River	
	10 Services	130 Infrastructures	

Combined Model SWMM+BASEMENT

Coupling of SWMM (US EPA) and BASEMENT (VAW Zurich)

APPLICATION OF DYNAMIC 1D/2D MODELS

T = 10 years

IDENTIFICATION OF INTERDEPENDENCIES, IMPACTS AND CASCADING EFFECTS

DENTIFICATION OF INTERDEPENDENCIES, IMPACTS AND CASCADING EFFECTS

Grid or network services have stronger redundancies such as power distribution and water supply.

IDENTIFICATION OF INTERDEPENDENCIES, IMPACTS AND CASCADING EFFECTS

IDENTIFICATION OF INTERDEPENDENCIES, IMPACTS AND CASCADING EFFECTS

EVALUATION OF URBAN RESILIENCE

	T = 10 years Tide level = 1.95 m	T = 10 years (+5% intensity) Tide level = 2.57 m
I1 - Percentage of volume overflowed by the drainage system	8.6%	12.0%
12 - Percentage of Flooded Area	4.9%	5.9%
I3 - Percentage of Flood Duration	93.8%	95.8%
14 - Percentage of Buildings Affected	6.5%	7.8%
15 - Percentage of Critical Services Affected	35.0%	35.0%
Integrated Urban Resilience Index	70.3%	68.7%

Hazard × Vulnerability × Exposure

Resilience

4. Main conclusions

Structural Measures

Risk =

 \uparrow Hydraulic Capacity of Infrastructures

 \downarrow Affluent flows to the system (Source Control)

Non-structural and Resilience Management Measures

+ Monitoring and warning systems

+ Modellation, simulation and evalutaion tools

 \uparrow Multisectoral cooperation

Thank you!