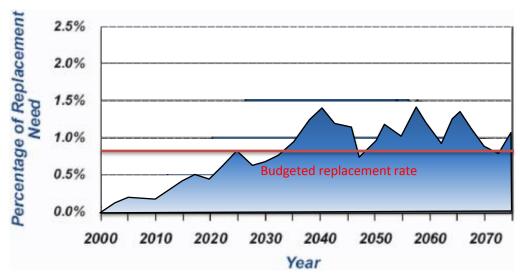
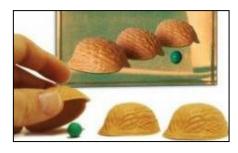

Financial Optimization of Condition Assessment Spending for Pipeline Replacement Programs

Gerard Hientzsch- Echologics

Water Mains Reaching End of Life


- Many water mains were installed between 1950 and 1980
- These will reach their design life together in a large wave
- Capital funds insufficient to meet the need

The Impact of Asset Management


- Base the need for replacement on <u>condition</u> instead of age
- Reduces the need for investment to bring it in line with available investment funds

Financial Risk of Decision Errors

- Limited information means a risk of errors
- Consider the risk in this "3 shell game"
 - Choose the right shell, you lose nothing
 - Choose the wrong shell, you lose € 5

- Risk = Probability of a wrong choice (66.7%) x Consequences of a wrong choice (€ 5)
 - = € 3.33 per play

Financial Risk in Pipe Replacement

- Similar to the 3 shell game
 - Some mains need to be replaced
 - Other are in good condition
 - Mains are covered, so distinguishing is difficult
- Replacing a good main wastes a valuable asset
 - The remaining useful life of the old main is lost
- When replacing a main:
 - Risk = Probability the main is in good condition
 x Residual value of the good main

Limited Data → Uncertain Decisions

Pipeline 1	Pipeline 2
Installed 1860	Installed 1860
Brown sandy soil	Brown clay soil
Moderate soil corrosivity	Moderate soil corrosivity

Limited Data → Uncertain Decisions

Pipeline 1	Pipeline 2							
Installed 1860	Installed 1860							
Brown sandy soil	Brown clay soil							
Moderate soil corrosivity	Moderate soil corrosivity							

Decision = Replace

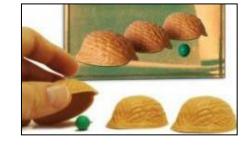
Decision = Replace

Limited Data → Uncertain Decisions

Pipeline 1	Pipeline 2
Installed 1860	Installed 1860
Brown sandy soil	Brown clay soil
Moderate soil corrosivity	Moderate soil corrosivity

Decision = Replace

Decision = Replace X



We Can "Pay To Peak"

- More information... for a price
- Pay € 1 to peak under one shell

- 33% chance you find the pea → 0% chance of error
- 67% chance you don't → 50% chance of error
- Risk of error is now 33% x € 5 = € 1.67 per play
- Cost = Information Cost + Risk of error
 - = € 1 + € 1.67
 - = € 2.67 per play
- Risk without the extra information was € 3.33 per play

Paying to Peak at a Pipe

- Pipeline inspection:
 - Buying more information
 - Total Cost = Inspection Cost + Risk of Error

Paying To Peek at a Pipe

Pipeline 1	Pipeline 2
Installed 1860	Installed 1860
Brown sandy soil	Brown clay soil
Moderate soil corrosivity	Moderate soil corrosivity
Inspection Results: 31% degraded	Inspection Results: 1% degraded
Inspection Condition Prediction: Poor	Inspection Condition Prediction: Good

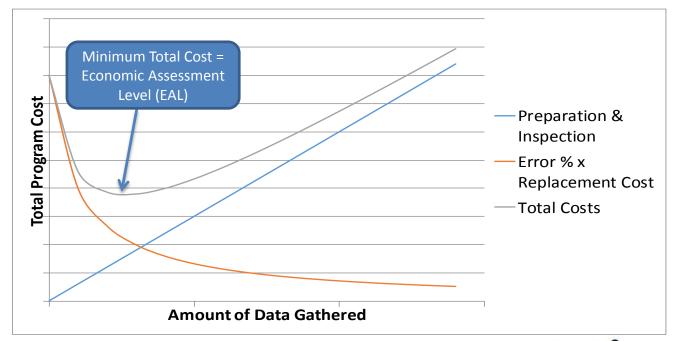
Decision = Replace

Decision = Keep

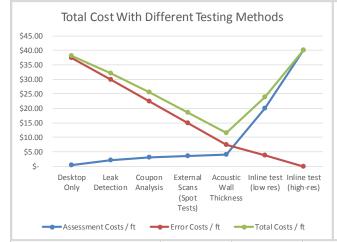
Paying To Peek at a Pipe

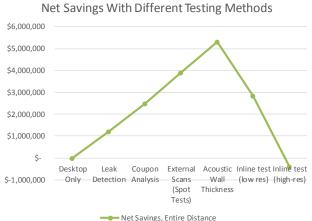
Pipeline 1	Pipeline 2
Installed 1860	Installed 1860
Brown sandy soil	Brown clay soil
Moderate soil corrosivity	Moderate soil corrosivity
Inspection Results: 31% degraded	Inspection Results: 1% degraded
Inspection Condition Prediction: Poor	Inspection Condition Prediction: Good

Decision = Replace


Decision = Keep

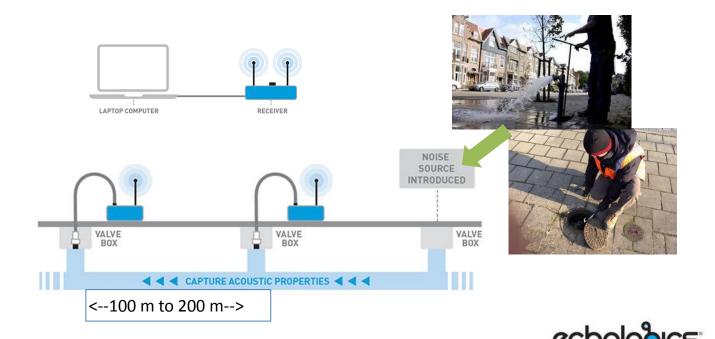
Total Cost Has a Minimum


Total Cost = Assessment cost + Incorrect replacement cost



Total Cost Comparison Method

Input Parameters														
Replacement cost	\$	150.00	/ ft			Fraction	of rep	lacement	value	lost if repla	aced in	correctly:		50%
Distance under consideration		200	miles											
					Coupon		Exter	nal Scans	Acou	stic Wall	Inline	test	Inline te	st
Scenario	Desk	ktop Only	Leak I	Detection	Analysis	5	(Spot	Tests)	Thick	ness	(low r	es)	(high-res	5)
Cost of Preparation	\$	-	\$	0.50	\$	2.00	\$	1.00	\$	0.50	\$	10.00	\$	20.00
Cost of Inspections	\$	0.50	\$	1.50	\$	1.00	\$	2.50	\$	3.50	\$	10.00	\$	20.00
Decision error rate		50%		40%		30%		20%		10%		5%		0%
Results Output														



Case Study Technology: ePulse

Non-invasive tests of Average Wall Thickness

ePulse Method is Established and Verified

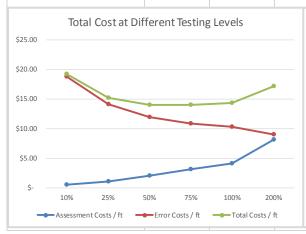
- >10 years
- >10,000 scans
- >100 validations

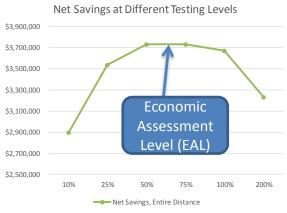
 But, decision errors can be made even with reliable data

Section	Diameter	Length	Material	Original Thickness	Measured Thickness	Thickness Loss
1	8 in	546 ft	CI	0.38 in		
2	8 in	251 ft	CI	0.38 in		
3	8 in	252 ft	CI	0.38 in		
4	8 in	428 ft	CI	0.38 in		
5	8 in	427 ft	CI	0.38 in		
6	8 in	516 ft	CI	0.38 in		
7	8 in	513 ft	CI	0.38 in		
8	8 in	491 ft	CI	0.38 in	0.35 in	9%
9	8 in	354 ft	CI	0.38 in		
10	8 in	398 ft	CI	0.38 in		
11	8 in	526 ft	CI	0.38 in		
12	8 in	412 ft	CI	0.38 in		
13	8 in	554 ft	CI	0.38 in		
14	8 in	474 ft	CI	0.38 in		
15	8 in	549 ft	CI	0.38 in		
16	8 in	481 ft	CI	0.38 in	0.36 in	6%
17	8 in	775 ft	CI	0.38 in		
18	8 in	829 ft	CI	0.38 in		

Section	Diameter	Length	Material	Original Thickness	Measured Thickness	Thickness Loss
1	8 in	546 ft	CI	0.38 in		
2	8 in	251 ft	CI	0.38 in		
3	8 in	252 ft	CI	0.38 in		
4	8 in	428 ft	CI	0.38 in	0.35 in	7%
5	8 in	427 ft	CI	0.38 in		
6	8 in	516 ft	CI	0.38 in		
7	8 in	513 ft	CI	0.38 in		
8	8 in	491 ft	CI	0.38 in	0.35 in	9%
9	8 in	354 ft	CI	0.38 in		
10	8 in	398 ft	CI	0.38 in		
11	8 in	526 ft	CI	0.38 in		
12	8 in	412 ft	CI	0.38 in	0.37 in	4%
13	8 in	554 ft	CI	0.38 in		
14	8 in	474 ft	CI	0.38 in		
15	8 in	549 ft	CI	0.38 in		
16	8 in	481 ft	CI	0.38 in	0.36 in	6%
17	8 in	775 ft	CI	0.38 in		
18	8 in	829 ft	CI	0.38 in		

Section	Diameter	Length	Material	Original Thickness	Measured Thickness	Thickness Loss
1	8 in	546 ft	CI	0.38 in		
2	8 in	251 ft	CI	0.38 in	0.29 in	14%
3	8 in	252 ft	CI	0.38 in		
4	8 in	428 ft	CI	0.38 in	0.35 in	7%
5	8 in	427 ft	CI	0.38 in		
6	8 in	516 ft	CI	0.38 in	0.39 in	0%
7	8 in	513 ft	CI	0.38 in		
8	8 in	491 ft	CI	0.38 in	0.35 in	9%
9	8 in	354 ft	CI	0.38 in		
10	8 in	398 ft	CI	0.38 in	0.33 in	13%
11	8 in	526 ft	CI	0.38 in		
12	8 in	412 ft	CI	0.38 in	0.37 in	4%
13	8 in	554 ft	CI	0.38 in		
14	8 in	474 ft	CI	0.38 in	0.27 in	30%
15	8 in	549 ft	CI	0.38 in		
16	8 in	481 ft	CI	0.38 in	0.36 in	6%
17	8 in	775 ft	CI	0.38 in		
18	8 in	829 ft	CI	0.38 in	0.36 in	5%

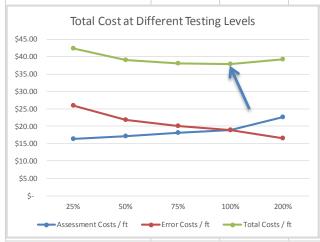


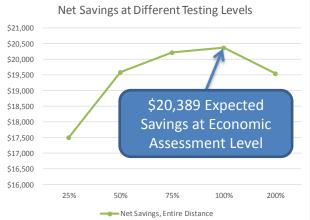

Section	Diameter	Length	Material	Original Thickness	Measured Thickness	Thickness Loss
1	8 in	546 ft	CI	0.38 in	0.31 in	20%
2	8 in	251 ft	CI	0.38 in	0.29 in	14%
3	8 in	252 ft	CI	0.38 in	0.34 in	11%
4	8 in	428 ft	CI	0.38 in	0.35 in	7%
5	8 in	427 ft	CI	0.38 in	0.37 in	4%
6	8 in	516 ft	CI	0.38 in	0.39 in	0%
7	8 in	513 ft	CI	0.38 in	0.32 in	17%
8	8 in	491 ft	CI	0.38 in	0.35 in	9%
9	8 in	354 ft	CI	0.38 in	0.38 in	0%
10	8 in	398 ft	CI	0.38 in	0.33 in	13%
11	8 in	526 ft	CI	0.38 in	0.38 in	0%
12	8 in	412 ft	CI	0.38 in	0.37 in	4%
13	8 in	554 ft	CI	0.38 in	0.35 in	7%
14	8 in	474 ft	CI	0.38 in	0.27 in	30%
15	8 in	549 ft	CI	0.38 in	0.38 in	0%
16	8 in	481 ft	CI	0.38 in	0.36 in	6%
17	8 in	775 ft	CI	0.38 in	0.35 in	9%
18	8 in	829 ft	CI	0.38 in	0.36 in	5%

Cost Optimisation Tool

Input Parameters										
Replacement cost	\$ 150.00	/ ft		Fract	tion	of rep	olacement v	value lost if repla	aced incorrectly:	50%
Distance under consideration	30	miles					Cost to	o dig a 4-inch hol	e to top of pipe:	\$ 1,325
Inspections unit price	\$ 3.50	/ ft					Number	of 4-inch holes n	eeded per mile:	2
Inspections mobilization cost	\$ 10,000	Fixed								
Testing Amount	0%		10%		25%		50%	75%	100%	200%
Cost of Preparation / ft	\$ -	\$	0.05	\$ 0).13	\$	0.25	\$ 0.38	\$ 0.50	\$ 1.00
Cost of Inspections / ft	\$ -	\$	0.41	\$ 0).94	\$	1.81	\$ 2.69	\$ 3.56	\$ 7.06
Decision error rate	50%		25%	:	19%		16%	14%	14%	12%
Results Output										

A (MILICIAN) TECHNOLOGIES COMPANY

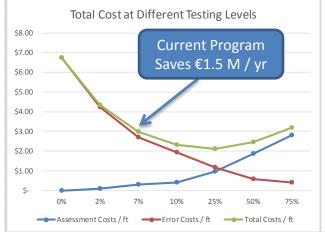

Case Study 1: UK Water Company – Summary

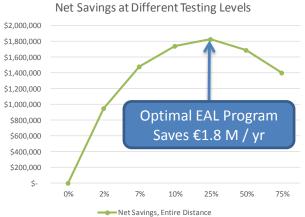

- 22,000 miles of mains serve 4.3 million customers
- Replacing 50 miles of mains per year
- Rehabilitating a 4.5 mile long 18-inch main
- One 650 ft section was difficult to rehabilitate, as it ran through an environmentally protected area
- Replace at a cost of \$150,000, or leave in place?
- Acoustic testing confirmed main in good condition
- Net savings of over \$130,000 achieved

Case Study 1: UK Water Company—Summary

Input Parameters												
Replacement cost	\$ 230.77	/ ft		Frac	tion	of rep	lacement v	value	lost if repla	aced in	correctly:	60%
Distance under consideration	0.123	miles					Day cos	t for e	nabling wo	ork (if r	equired):	\$ 360
Inspections unit price	\$ 3.50	/ ft					Numbe	r of d	ays needed	for as	sessment	1
Inspections mobilization cost	\$ 10,000	Fixed										
Testing Amount	0%		10%		25%		50%		75%		100%	200%
Cost of Preparation / ft	\$ -	\$	0.01	\$ (0.02	\$	0.03	\$	0.05	\$	0.07	\$ 0.14
Cost of Inspections / ft	\$ -	\$	15.73	\$ 10	6.26	\$	17.13	\$	18.01	\$	18.88	\$ 22.38
Decision error rate	50%		25%		19%		16%		14%		14%	12%
Results Output												

Case Study 2: Dutch Water Company – Summary




- 11,500 miles of mains serve 1.2 million customers
- 186 miles / year of replacement
- Group mains into cohorts with same neighbourhood, material, and year of construction
- Take several condition measurements in each cohort
- Old program: cut out samples of older pipes
- New program: non-invasive, non-destructive testing
- Currently testing 7% of mains

Case Study 2: Dutch Water Company – Analysis

Input Parameters											
Replacement cost	\$ 48.00	/ ft Fraction of replacement value lost if replaced incorrectly:								40%	
Distance under consideration	75	miles				Cost 1	to prepar	e & support 1 d	ay of insp	ections:	\$ 650
Inspections unit price	\$ 3.50	/ ft					Numbe	er of field days	needed p	er mile:	1.6
Inspections mobilization cost	\$ 10,000	Fixed									
Testing Amount	0%		2%		7%		10%	25%	ó	50%	75%
Cost of Preparation / ft	\$ -	\$	0.00	\$	0.01	\$	0.02	\$ 0.05	\$	0.10	\$ 0.15
Cost of Inspections / ft	\$ -	\$	0.10	\$	0.27	\$	0.38	\$ 0.90	\$	1.78	\$ 2.65
Decision error rate	35%		22%		14%		10%	6%	ó	3%	2%
Results Output											

Case Study 3: American Water Company – Summary

Pilot Project Details

- 43 miles of ePulse testing
- \$ 850.000 project
- 10 weeks of testing
- 0 excavations, 0 service disruptions

Pilot Project Result

- >20 miles of good pipe found
- \$14M redirected from pipes actually in good shape
- Bonus: found \$117k worth of leaks

Results:

- ✓ Program for **75 miles** of testing per year
- ✓ Inspection data incorporated into asset management decisions
- ✓ Reduced waste by over \$12.5 million per year
- ✓ Acheived a 17% efficency gain in capital spending

Case Study 3: American Water Company – Analysis

Input Parameters											
Replacement cost	\$	200.00	/ ft			Fraction	of re	placement	value lost if repla	aced incorrectly:	
Distance under consideration		75	miles					Cost to	o dig a 4-inch hol	e to top of pipe:	\$ 1,
Inspections unit price	\$	3.25	/ ft					Number	of 4-inch holes n	eeded per mile:	
Inspections mobilization cost	\$	10,000	Fixed								
Testing Amount		0%		10%		25%		50%	75%	100%	2
Cost of Preparation / ft	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$
Cost of Inspections / ft	\$	-	\$	0.35	\$	0.84	\$	1.65	\$ 2.46	\$ 3.28	\$
Decision error rate		50%		25%		19%		16%	14%	14%	
Results Output											
\$25.00 S15.00 \$5.00	ifferer	nt Testing	Levels	<u> </u>		\$13,200,0 \$13,000,0 \$12,800,0 \$12,600,0 \$12,400,0 \$12,200,0 \$12,000,0 \$11,800,0 \$11,600,0		Net Savin	Optima	EAL Progra \$13.1 M/y	am
\$- 25% 50%	7:	5%	100%	2009	6	\$11,400,	000	25%	50%	75% 100%	200%

Conclusions

- Decision making under uncertainty can be managed using the idea of financial risk
- Economic Assessment Level can be calculated
- More expensive mains justify more testing
- Less expensive mains still need some testing
- Any amount of testing is better than none at all

Questions?

Gerard Hientzsch — ghientzsch@echologics.com

