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ABSTRACT 
 In solving real-world river water-quality problems, mathematical models at present are used 
very little at the decisional level. The reason for this is, in our opinion, the existence of unre-
solved difficulties associated with the collection of the data required for model calibration. 
Surprisingly, the literature does not contain a consistent description of criteria supporting the 
design of data gathering campaigns explicitly dedicated to model calibration. In particular lit-
tle attention is paid to the role that dispersion plays in this context. It is known that plug flow 
models can be more easily calibrated than dispersion models when the data gathering cam-
paign is suitably organized. But when can a plug flow model substitute a dispersion model? 
This paper derives a theoretically sound criterion to reply to this fundamental question. 
 
Keywords: water quality modeling, data collection campaigns, environmental monitoring, 
calibration, parameter estimation. 
 
1. INTRODUCTION  
 The planning of a river basin and the Environmental Impact  Assessment of corresponding 
actions make immediate demands for models  that are simple enough to be handled by techni-
cians from environmental  agencies and to be set up at a reasonable cost. These models must 
however be sufficiently reliable and sophisticated to describe a real- world system with a suit-
able level of accuracy, detail and flexibility.  For a very large number of cases, 
one-dimensional models are certainly  well-suited for these purposes. However, they must be 
well calibrated.  
 Although in the literature there are even very detailed descriptions of the available data 
(see, for instance, Gunnerson [1967]  who deals with a tidal estuary), or of the results obtained 
(see for instance Betty Ng et  al., 1996),  surprisingly, no emphasis has been  placed on fully 
describing the organization and execution of data  gathering campaigns aimed explicitly at 
model calibration. This reflects the fact that models, in practice, are often badly calibrated or 
fed with inadequate data. As an obvious consequence, their outputs are not reliable enough. 
This is perhaps the main reason why, in many countries and in Italy in particular, river quality 
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models are actually seldom used. More precisely, they are often used by consulting firms as a  
"façade" in order to achieve a look of seriousness or completeness or just to comply with 
given Terms of Reference (typically in Environmental Impact Assessment). At the decisional 
level, however, they are almost ignored. 
 The difficulties associated with the data gathering phase derive from, on the one hand, the 
complexity (number of state variables and parameters) of the model, and, on the other hand, 
much more heavily, from the structure of the transport term. This depends, in particular, on 
the presence of dispersion. In fact, the presence of dispersion generally requires the collection 
of a two-dimensional (time-space) information: the initial condition, the boundary conditions 
and the pattern of all the exogenous inputs affecting the system. How can the initial condition 
be measured? (Note that in the case of polluted rivers it cannot be assumed to be zero; an as-
sumption generally and correctly made in dispersion experiments with the release of tracers. 
See, for instance, Carter and Okubo [1972], Day [1975], Bencala and Walters  [1983], Job-
son [1987]). How can the huge number of collected samples be analyzed in a relatively short 
interval of time (specially in the case of biodegradable organic pollutants)? These questions, 
as far as we know, have never been clearly addressed (an interesting attempt in this direction 
can be found in Shieh and Davidson [1971], although the approach adopted is very empirical 
and is only applicable to a very special situation).    
 It is useful to point out that the problem we deal with in this paper is one of identification in 
the original meaning of the term, because our final aim is the model calibration. It is not, 
however, a classical parameter identifiability problem; indeed, we focus on a more opera-
tional, but basic issue which has to be faced previously. It can be noted, in fact, that if the wa-
ter quality model were described by ordinary differential equations, then it would be possible 
to use powerful results from identifiability theory. However the serious problem is that the ba-
sic model, describing the fate of a solute compound in a river, is not originally written in 
terms of total differential equations (although this may be justified in some cases as, for in-
stance, in Wilkinson et al., 1995), but, instead, in terms of partial differential equations, i.e. it 
concerns a two-dimensional (time- space) domain, and not a one-dimensional (time) domain. 
The key issue is, accordingly, to obtain data that are suited to: first, integrate the model partial 
derivative equations, and, second, calibrate the model (through comparison of the obtained so-
lution with instream measured data). Although it is with no doubts perfectly known in the lit-
erature what are the related mathematical requirements, the practical implications seem to 
have been  almost completely disregarded. The dramatic conclusion we reach is that it is prac-
tically impossible to collect all the required data.  
 
The role of dispersion 
 It may be observed that if dispersion is assumed to be absent, then the well known method 
of characteristics provides a criterion that dramatically reduces the data collection effort, un-
der the condition that the campaigns are suitably organized. Actually, very often data collec-
tion campaigns are carried out according to this method, although perhaps the underlying 
assumption is not made explicit in the model structuring (this is the case, for instance, of Scott 
ad Abumoghli, 1995). The key issue is, then, when such a "drastic" simplification is applica-
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ble. This is why much of this paper is devoted to investigate when a "plug flow" model is 
completely equivalent, from a theoretical and practical point of view, to a dispersion model. 
Thomann [1973] stated that the applicability of a plug-flow model is limited to the stationary 
case, but we show here that  this conclusion is not true in general and we obtain a criterion 
that allows to discriminate a priori when the equivalence is acceptable for a given river 
stretch. Our arguments are however restricted, from a  rigorous point of view, to 
one-dimensional spatial systems with linear  kinetics, and to the case in which the interac-
tions, if any, of  planktonic with benthic variables can be modeled by introducing suitable  ex-
ogenous inputs. In particular, problems involving a strong role of the  sediments, like that 
dealt with by Hawkins Writer et al. (1995), or  problems involving estuaries, like that de-
scribed by Betty Ng et al.  (1996), do not fit in our framework. 
 

The paper is organized as follows. First, the general structure of  (one-dimensional) models 
is presented. Then the difficulties to be faced  in order to collect the data required by model 
calibration are pointed  out. Three basic situations are then considered (stationary, periodic 
and aperiodic conditions) and possible design approaches are discussed for each. The benefits 
obtainable by using the method of characteristics are then shown, and the applicability of this 
method to the three basic  situations is discussed in detail in the case of linear models. Finally, 
 criteria for selecting the most suitable approach for the organization of the campaigns are 
proposed. Concluding remarks complete the paper. 
 
2. STRUCTURE OF RIVER-QUALITY MODELS  
 Let us consider a river where the pollutants added to the stream spread through its cross 
section over a distance that is very short in comparison to the distance covered by a typical 
dynamic response, e.g. the sag in the case of DO. Hence the river can be described by means 
of one space co-ordinate only, namely the distance l [m] computed along its axis. Indeed, this 
is a very common case in river quality modelling for planning purposes. Let us also assume 
that the influence of biochemical phenomena over the hydrological and thermal processes is 
negligible, so that the flow rate Q [m3/s], the cross-sectional velocity v [m/s] and temperature 
T [°C] are externally given functions of time and space (referred to as "exogenous inputs").  
Under such assumptions, a biochemical sub-model is in made up of a set of spatial 
mono-dimensional partial differential equations that quantify the mass conservation principle. 
These equations describe the changes over space and time of the state vector p [gr/m3] of state 
variables -water quality indicators- that represent the average cross-sectional concentrations of 
the chemical compounds and of the populations of the food web assumed to be representative 
of water quality. By denoting with, and A [m2] the cross sectional velocity and area, respec-
tively, of the stream, where A=Q/v  [m2], the related general vector equation can be given the 
following form (see for instance Rinaldi et al. [1979]):  

 t
p
∂
∂ + v l∂

∂p = lA ∂
∂ (AD l∂

∂p ) - A
S q p + S (Eq. 1a) 
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The first and the second terms of the left hand side of Eq. 1a  represent the rates of change of 
p with respect to time and space,  respectively, as seen by an observer fixed on the river bank. 
The first  term on the right hand side, called the dispersion term, represents the  effects due to 
molecular and turbulent diffusion and to longitudinal  dispersion, in a compact (and simpli-
fied) form, which in turn arise  because the velocity field over a cross-section is generally non 
uniform  (see Bear [1972] and Rinaldi et al. [1979]). The dispersion term is essential for all of 
the following discussion. Note that it is zero when  the dispersion coefficient D is zero. The 
second term on the right hand side takes into account the dilution of p due to the water inflow 
Sq (flow per unit of length, [m3/s m]) which is an exogenous input from the  hydrological 
sub-model and is thus assumed to be given. Finally, S [gr/m3 s] is the average cross-sectional 
source term that represents all the processes affecting the variable p. The term S depends, in 
general, on the whole vector p, on the external load (vectorial) function P(t,l) [gr/s] (simply 
called "load" in the following), on the hydrological (v, Q) and  thermal (T) state variables (in-
puts), and on a vector θθθθ of the parameters;  i.e:  

 S = S(t,  l, p, P, v,  Q,  T;  θθθθ) (Eq. 1b) 

3. THE INFORMATION REQUIRED FOR MODEL CALIBRATION 
 It is to be noted that to fully characterize the term S in Eq. 1a it is always necessary to spec-
ify the vector θθθθ of the unknown  parameters. E.g. in the classic Streeter-Phelps BOD-DO 
model, θθθθ has two components: the deoxygenation and reoxygenation rate coefficients (see  
Streeter and Phelps, 1925). We do believe that, in general, the values of such parameters can-
not be correctly measured, or calculated by means of some theoretical hypothesis, or taken 
from the literature. They can only be determined via a parameter estimation procedure based 
on field data. In fact, river conditions are always very different from those of any laboratory 
test where measurements are generally carried out. The values so obtained cannot be, for this 
reason, representative of reality. (A serious attempt to negate this statement by performing pa-
rameter estimation based on laboratory experiments is found in Mc Cutcheon [1987]. How-
ever, even there, only first order nitrification decay rate coefficients are estimated.  Moreover, 
Mc Cutcheon's approach is applicable only to estimating reaction rates and not true model pa-
rameters. Finally, it requires a large number of field measurements. The validity of this ap-
proach has been experienced only for a particular type of river). A theoretical calculation is 
based on some sort of model, so that the calibration problem would arise for this model too. 
Finally, every river is such a complex system that "a priori" cannot be assumed to be equiva-
lent to any other. This assertion is supported by observing that the range of parameter values 
given in the literature [e.g. EPA, 1985] is extremely wide.  In order to therefore determine the 
value of the parameter vector θθθθ, a parameter estimation (calibration) problem must be formu-
lated and solved  (see Beck [1987] for an important review).  
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 As is briefly restated in the following, the estimation problem always requires us to inte-
grate Eq. 1a, and this, in turn, generally requires a large amount of data.  
 To formulate the estimation problem it is necessary to assume that, for at least some of the I 
components pi (i=1,...,I) of the state vector  p, ni measurements {pik, k=1,..,ni} can be col-
lected at suitable sampling  stations along the river stretch. The simplest and most often used 
approach for parameter estimation is therefore the following, which assumes that the system 
model has no process noise. The "distance" between reality and the model (the integra-
tion/simulation of which produces the computed concentrations pik(θθθθ) at the same stations) is 
measured by a  given error function ξ[θθθθ] = ξ[θθθθ, {pik}i,k,{pik(θθθθ)}i,k].  Typically  ξ[θθθθ] is the 
(weighted) sum, over all the measurements (k=1,..,ni; i=1,...,I), of  the squared deviations be-
tween the measured (pik) and the computed  (pik(θθθθ)) concentrations (deterministic 
least-squares estimation). The parameter estimation problem is hence formulated as the prob-
lem of determining a value θθθθ* that minimizes the error function ξ[θθθθ]. To solve it, perhaps the 
most common method is simply "by trial and error", in which an empirical iterative search is 
performed in the parameter space.  More refined methods are typically Quasilinearization 
[Bellman and  Kalaba, 1965; Lee, 1968; Stehfest, 1973], or Mathematical Programming  algo-
rithms [Yih and Davidson, 1975; Rinaldi et al., 1979]. In both the cases, it is evident that the 
integration (simulation) of Eq. 1a is required at each iteration in order to evaluate ξ[θθθθ]. When 
a system model is adopted in which the process and measurement noises are formally intro-
duced, the previous method is no longer directly applicable because the state is now a stochas-
tic variable. The approach most often used in this case is to linearize the system model and to 
then apply the results of the probabilistic linear least-squares parameter-state estimation. The 
result is the Extended Kalman filter  [Bellman et al., 1966; Beck, 1974, 1975, 1976, 1980, 
1987; Ikeda et al., 1974; Lettenmaier and Burges, 1976; Bowles and Grenney, 1978]. Even 
with this technique, a system simulation is (indirectly) required (see Beck  [1987], Eq.14a), in 
order to compute the expected state value.  Note, that this technique requires a lumped system 
model, so that, strictly speaking, it is not applicable when the system is described by Eq. 1a. 
Such an equation is, however, usually transformed into a lumped equation through space dis-
cretization or, alternatively, by assuming that dispersion is absent as is well clarified in the 
following sections. More generally, no matter what the particular approach adopted, parameter 
estimation requires the integration (simulation) of Eq. 1a directly or indirectly. Thus the in-
formation needed to carry out the parameter estimation problem comprises not only the set 
{pik}i,k of measurements, but also all the data necessary for the  simulation itself. To point out 
the burden of such a data requirement,  let us consider the simulation phase in greater detail. 
 In order to integrate the model Eq. 1a no matter the particular numerical scheme adopted 
[Schoellhamer, 1987; Sobey, 1984;  Bride and Rutherford, 1984; Cunge et al., 1980; van 
Genuchten and Gray, 1978; Varoglu and Finn, 1978; Gray and Pinder, 1976], one has to  
specify, in a suitable domain D of space and time, the inputs [Q(t,l),  v(t,l), Sq(t,l), T(t,l)] and 
the load function [P(t,l)] that "cause" the  measurement set {pik}i,k. The domain D is com-
monly a rectangular domain  T•L defined by the cartesian product of the modeled river stretch 
L and  the observation interval T. Moreover, two "conditions" must be given:  the initial and 
the boundary conditions. The first condition is a  "picture" of the concentrations that are pre-
sent all along the river stretch at (initial) time t=0 and corresponds to specifying p(0,l)=pi(l)
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for all l∈L. The second condition corresponds, in the simplest case of the absence of disper-
sion (D=0), to assigning p(t,0)=pu(t), i.e. to  assigning the time evolution of p in the upstream 
(initial) section. In the opposite case (i.e. when dispersion is not negligible) the concentration 
p(t,L)=pd(t) in the downstream (final) section must also  be specified.  
 Here is the crux of our problem: the practical difficulties associated with the collection of 
the data necessary in specifying all that information. Let us illustrate these difficulties by 
means of a very simple example. We wish to model a river stretch L of 100 km in length, af-
fected by (only) 15 significant loads (tributaries and/or sewage discharges), with a very simple 
BOD-DO model (i.e. p is two- dimensional). The parameter vector θθθθ of such a model be 
six-dimensional. In order to obtain a representative image of system conditions, it is reason-
able to observe it for at least one day (i.e. T equals 24 hours), so that it would be possible to 
observe the daily load cycle. To define the initial condition pi(l) then one certainly needs no 
fewer than 15 instream samples which are collected at stations spaced along the river stretch.  
To specify the upstream boundary condition pu(t) at least 12 samples  (one every 2 hours) are 
required. When dispersion is not negligible, 12 additional samples (one every 2 hours) must 
be collected to define the downstream boundary condition pd(t). The load function P(t,l) can 
be  estimated by collecting at least 12 samples (one every 2 hours) at each  of the 15 inflow 
points. This means that (without considering what is required to specify the input functions 
Q(t,l), v(t,l), Sq(t,l), and  T(t,l)) in order to carry out the model simulation a total of 223  sam-
ples must be collected. Two measurements must be carried out on each sample: one for BOD 
and one for DO. Moreover, by assuming a minimum of 10 data for each parameter to be relia-
bly estimated, at least 30  instream samples must be collected to produce the measurement set 
 {pik}i,k. The total requirement then for the estimation problem is about  500 measurements. It 
is apparent from this figure, which is definitely a lower bound for the case at hand, that huge 
practical difficulties would arise in collecting and quickly analyzing such a large number of 
samples  (the measurement of biochemical indicators, like BOD, must take place within a few 
hours after sample collection). A laboratory is rarely able to afford such a stringent task. 
Moreover, it is to be noted that the collection of samples that specify the initial condition pi(l)
requires  the availability of many skilled personnel who are distributed along the  river stretch, 
and who act simultaneously at time t=0. Last, but not least, the effort required for the defini-
tion of the input functions  [Q(t,l), v(t,l), Sq(t,l), T(t,l)] should not be neglected. They must be 
given in the domain T•L. In particular, the determination of the hydrological input Sq(t,l) im-
plies a huge number of costly measurements.  In conclusion, it can be seen that it is practically 
impossible to solve the parameter estimation problem correctly when adopting the general un-
steady-dispersion model described by Eq. 1a (except for the case of the release of tracers or 
pollutant spillover, since in that  case the initial condition and the downstream boundary con-
dition are  null, the upstream boundary condition is a known impulse function, and  the load is 
null).  
 It is now evident that, on the one hand, the number of state variables and parameters (i.e. 
the complexity of the model) should be kept as low as possible and that, on the other hand, 
any possible reduction in the information required to carry out the simulation is of great im-
portance. In order to understand whether and how such a reduction can be carried out, three 
basic situations are analysed in the following section. 
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4. THREE BASIC SITUATIONS  
 Let us consider the following three basic situations (or conditions) which are meant to apply 
to the entire system (i.e. to the hydrological, thermal and biochemical sub-systems) and to 
which  progressively larger information requirements correspond:  
(a) - stationary conditions  
(b) - periodic conditions  
(c) - aperiodic conditions.   
In the first case (a), the partial derivative with respect to time in Eq. 1a is null, so the equation 
becomes a total derivative which can be integrated by solving a two boundary value problem. 
Hence the initial condition pi(l) is no longer necessary. Furthermore, the boundary condition 
and the loads can be measured once only in the interval T. The reader can then easily compute 
that the data requirement is now for only 94 (= [17+30]*2) measurements. Furthermore, the 
data gathering campaign is quite simple and could be executed by an individual operator. Of 
course, this is true only if the system is really under stationary conditions, a fact that must be 
ascertained and that is unfortunately very rarely met in practice.  
 In the second case (b), we have two alternatives: either (b1) to describe the average behav-
iour of the system, hence going back to the previous case, or (b2) to consider the time varying, 
periodic behavior directly. In case (b1), in fact, it is easy to see, provided that the source term 
S is linear with p and P, that the space dynamics of the average concentrations are governed, 
as in case (a), by the stationary version of Eq. 1a. (This can be proved easily by applying the 
Laplace transform with respect to t to both sides of Eq. 1a and by then setting the complex 
variable s to zero. What one obtains is the equation governing the dynamics of the time aver-
aged concentration p(l).) Even in case (b2) the difficulty of measuring the initial condition 
pi(l) can be overcome: in fact, if the system is  asymptotically stable (as it must naturally be) 
one can assume an  arbitrary initial condition pi(l) and determine the periodic function  p~(t,l)
to which the solution of Eq. 1a will converge for t  approaching infinity. (In practice, this 
function can be computed by integrating Eq. 1a over an interval of time which is long enough 
to "forget" the initial arbitrary condition. Note that since the system is by hypothesis under a 
periodic condition, the boundary condition, the inputs and the load are known for any t, once 
they are known all across one period.) With respect to the stationary case, in case (b) there is a 
considerable increase in the number of required measurements. In fact, except for the initial 
condition (which in the above example is 15 samples), one has to collect the same set of sam-
ples required under aperiodic conditions (case c) because the measurements thus obtained are 
then used to compute a reliable average (case (b1)), or to integrate the general time varying 
Eq. 1a (case (b2)). In both cases, however, the advantage with respect to the aperiodic condi-
tion is twofold: (1) no initial condition has to be determined, and very importantly, (2) the 
measurements can be spread over time as desired, given that one samples the load and the 
boundary conditions globally all over an entire period T. Again, of course, it must be true that 
the system is actually under periodic conditions, but this can be seen in practice much more 
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frequently than stationary conditions.  
 We now come to the aperiodic case (c). We have already shown that it is practically impos-
sible to collect all the information required for parameter estimation in such a case. We hence 
look for an approximate solution such that the information requirements can be reduced. The 
most attractive alternative is based on the assumption that dispersion is negligible (D=0). The 
original dispersion model then reduces to a plug- flow model that can be solved by using the 
old method of characteristics. As is shown in the next section, this approach greatly reduces 
the amount of data required to carry out the simulation. It is interesting to note that almost all 
the (few) cases presented in the literature, where a data gathering campaign is described, refer 
to this assumption explicitly or implicitly. See, for instance, Jakeman et al.  [1989], Mc 
Cutcheon [1987], Todd and Bedient [1985] and Edeline [1981].  The size of the error intro-
duced by neglecting the dispersion effect is, however, obviously questionable, and it is inter-
esting to wonder if it can be reduced by means of some technique. The analysis of these 
questions is the subject of Section 5.  
 The findings of this section are synthesized in Tab. 1. 
 
Tab. 1 - How to deal with the initial and boundary conditions and the loads in the three basic 
situations  
Situation Initial condition Boundary condition, and loads 
a) Stationary not necessary only one measure 
b) Periodic not necessary or computable measure over a cycle 
c)  Aperiodic  
- negligible dispersion not necessary only one measure 
- not negligible dispersion necessary measure over the interval T

5. APPLICABILITY OF THE METHOD OF CHARACTERISTICS  
 When the method of characteristics (see Appendix 1) can be applied, data gathering cam-
paigns can be designed with a very simple and elegant criterion: the samples (and the input 
measurements) have to be collected as if they had been collected by an observer moving 
downstream at the same velocity as the flow.

To point out how the use of the method of characteristic affects the data gathering phase, let 
us again consider our example (once more, only the measurements related to quality indicators 
are considered). In order to obtain the 60 measurements necessary for parameter estimation, 
by means of samples (two measurements for each sample) collected at the 15 instream 
sampling stations, it is necessary to carry out two different data gathering campaigns. The data 
necessary for simulation must also be collected in each campaign, that is 16 samples: 15 to 
quantify the loads and 1 for the initial condition. (Note that this requirement is analogous to 
that found for the stationary case (a), with the exception that the downstream condition is no 



European Water Management Online 
Official Publication of the European Water Association (EWA) 
© EWA 2003 

Andrea Nardini, Rodolfo Soncini-Sessa:  Application of River Water Quality Models: The Role of Dispersion in 
the Model Calibration    Page 9 

longer necessary since in the absence of dispersion no signal can propagate upstream.) In 
conclusion, a total of only 62 samples must be collected for the two campaigns, and hence 
only 124 measurements (against 500) have to be carried out. It must be noted that besides a 
consistent reduction in the data requirement other considerable advantages arise:  
• there is no longer any need for simultaneous sampling because the  initial condition pi(l) is 

no longer required;  
• the effort required by the analysis laboratory is less than 1/8  that of the previous case be-

cause the 124 data are collected in two  independent campaigns which can be well spread 
out over time; 

• as the two campaigns can be carried out under different hydro- thermal and load condi-
tions, more insight into the system is  obtained and so the model can be more representa-
tive of reality;  

• the number of measurements can be even further reduced by  increasing the number of in-
stream sampling stations so that fewer  campaigns are required. 

 
In this section we search for a criterion that indicates when the error induced by adopting 

the solution to the plug-flow model Eq. 1a with D=0) instead of the solution to the dispersion 
model Eq. 1a with D≠0), is negligible: i.e. we look for a criterion that indicates when a 
plug-flow model can be adopted to model real-world conditions where dispersion is actually 
present. Under stationary conditions the criterion we look for is the Dobbins' Criterion (DC).   
Even if this criterion is well known we present a non-classic way of proving it since this helps 
us in deriving an analogous criterion in the periodic case (more precisely, for a particular peri-
odic case). This criterion, in turn, helps when dealing with the aperiodic case. From these cri-
teria we derive a technique that, when adopted, always produces a reduction in the 
approximation error. 
 

5.1 Stationary conditions  
 From a comparison of the numerical solutions to a simple plug-flow BOD-DO model and 
of the corresponding dispersion model, Dobbins [1964] concluded that dispersion can be as-
sumed to be zero when the following inequality holds:  

 v
kD 2
2 < 10-2 Eq. 2 

where k [s-1] is the greater of the deoxygenation and the reoxygenation  parameters. Condition 
Eq. 2 is known as the Dobbins' Criterion (DC).  (Sometimes, as in EPA [1985], the criterion is 
credited to Ruthven  [1971], but we prefer to credit it to Dobbins, since, as far as we know, he 
first proposed it).  
 When the DC is fulfilled, dispersion is negligible in the sense that a natural plug-flow 
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model is as good operationally as a dispersion  model. The data gathering campaign can there-
fore be organized along a characteristic line defined by equations Eq.5a and Eq.5ab (natural  
characteristic line). This was since now a known result in the relevant literature. 
 When the DC is not fulfilled, one would intuitively expect that this opportunity would be 
lost and a dispersion model compulsorily adopted.  The intuition is however wrong. As dem-
onstrated in detail in the Appendix 2, when the corrected velocity v*, given by Eq.13a, is sub-
stituted into the natural river velocity v in the definition of the characteristic line  (see Eq.5a), 
the corrected plug-flow model produces the same answer as the dispersion model. In conclu-
sion, under stationary conditions we can always adopt the corrected velocity v* , then collect  
data along the corresponding (corrected) characteristic line and finally  calibrate a plug-flow 
model. Moreover, since the natural value k for the reaction rate coefficient through Eq.13a is 
assumed for both the corrected plug-flow and the dispersion models, it follows that the best 
estimate for k* computed in the plug-flow model is also the best estimate for k in the disper-
sion model. 
 The reader may observe that, from the point of view of the design of data gathering cam-
paigns, all the techniques we have explained in Appendix 2 are useless. He (she) would be 
right. In fact, in the stationary case the number of data required by model calibration is not af-
fected by the design criterion one adopts, for the simple reason that concentrations do not vary 
over time. However, the entire technique is not irrelevant from a conceptual point of view, 
since it clarifies the relationships between the two types of models (the dispersion-stationary 
model and the plug-flow model). The knowledge of these relationships is of great help in the 
analysis of the non-stationary (aperiodic) case. 
 
5.2 Periodic case  
 In the analysis of the periodic case there is a precedent in Thomann [1973], who stated that 
the applicability of a plug-flow model is in practice limited to the stationary case (in which 
case there would obviously be neither any need nor benefit in organizing the data gathering 
campaign along a characteristic line). To reach this conclusion he started from the observation 
that when a system, described by the simplified version of Eq. 1a presented in Sect. 5.1, is 
driven in the initial section (l=0) by a periodic sinusoidal load of amplitude U and frequency 
ω, it supplies an output concentration p(t,l) which, in every section l>0, is a sinusoid of am-
plitude RD(ω,l)U and  phase ΨD(ω,l). (This is a well known result from System Theory where 
the couple [RD(ω,l), ΨD(ω,l)] is called frequency response.) Then he showed that, under the 
same load condition, the corresponding plug-flow model also supplies a sinusoidal output 
concentration p'(t,l). In this case the frequency response [RP(ω,l), ΨP(ω,l)] is, however,  sig-
nificantly different, both in amplitude and in phase, from the  dispersion model frequency re-
sponse. He demonstrated these results through a series of dimension-less graphs in order to 
explore a wide range of possible values of the key variables, namely: v, D, k, ω, l. The con-
clusion was that "...when waste load inputs vary with period of about 7 days or less, the ef-
fects of small amounts of dispersion on the amplitude of the water quality response may be 
significant. For large, deep rivers the effect of dispersion can generally not be neglected in  
time-varying studies". From such statements one concludes that the area of applicability of a 
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plug-flow model (and therefore of the method of characteristics), is very narrow since in the 
majority of cases either the dispersion is not small enough or the load frequency is too high  
(typically with a period of one day for urban waste).  
 In the Appendix 3, we show that this conclusion is partially false. In fact, contrary to Tho-
mann, we prove that in the simple sinusoidal load condition he considered, a plug-flow model 
always exists which is completely equivalent to the dispersion model. Moreover, and more 
importantly, we derive an "Extended Dobbins' Criterion" which provides a guideline to evalu-
ating the applicability of a plug-flow model when the load is not sinusoidal.  
 It is perhaps worth anticipating intuitively why we will reach different conclusions to those 
of Thomann [1973]. The reason is not a mistake in his deductive reasoning, but an incorrect 
positioning of the problem he considered: Thomann compared a dispersion model and a plug- 
flow model characterized by the same value of the coefficient k. As already pointed out, the 
reaction rate coefficient k, or more generally the model parameter vector θθθθ, is not a priori 
known and must be calibrated on the basis of field data that are collected in dedicated cam-
paigns. Hence here is the new key idea: it is possible to use a plug- flow model in cases 
where, according to Thomann's analysis, it would be not applicable, because the calibration 
itself will produce a value k* for the reaction rate coefficient that may be, in general, different 
from the natural value k (that which would be obtained by adopting a dispersion model), but it 
is such that the output response of the plug- flow model be as close to the observed concentra-
tions as would the output response of the dispersion model. More precisely, in the absence of 
process and measurement errors, the input-output relationship of the  plug-flow model (pa-
rameterized with k*) and that of the dispersion model  (parameterized with k) are identical. 
One might claim that the value obtained for the reaction rate coefficient is not the "true" 
value. This objection, however, could give rise to endless metaphysical discussions over the 
meaning of "true". Moreover, if the purpose is to develop a model for decision-making, the 
only thing that really matters is that the model supplies the right response, even if by using a 
"fictitious" coefficient.  
 



European Water Management Online 
Official Publication of the European Water Association (EWA) 
© EWA 2003 

Andrea Nardini, Rodolfo Soncini-Sessa:  Application of River Water Quality Models: The Role of Dispersion in 
the Model Calibration    Page 12 

Fig. 1. Distortion effect due to the phase difference (re-worked from Thomann [1973], arbitrary 
scales). 
 

At first glance the above fairly simple idea seems to be destroyed by the following observa-
tion: consider Figure 1 (re-worked from Figure 7 of Thomann's paper). This figure reproduces 
(see window l=0) the fluctuations ∆pu(t) of the upstream concentration pu(t) (boundary  condi-
tion) with respect to a reference level. It also shows the corresponding fluctuations ∆p(t,l) of 
the water quality responses p(t,l) in three downstream sections l1, l2 and l3, for both the dis-
persion  (dashed line) model and for the natural plug flow model (solid line).  (Remember that 
this latter is obtained by setting D=0 in the dispersion  model, hence note that the coefficient k 
is given the same value in both  models). By observing the figure, one notes that the responses 
of the two models differ not only in wave amplitudes but also in phase. One may accept intui-
tively that the difference in amplitude could be eliminated by a suitable calibration of the 
plug-flow model (i.e. by using k* instead of k), but the difference in phase is a more difficult 
phenomenon. Let us highlight the implications. According to a plug-flow model, a "concentra-
tion wave" travels downstream at river velocity v, since, by assumption, there is no longitudi-
nal dispersion effect. Hence, according to this model, when one samples in section l at time 
t=t0+l/v  (i.e. when one samples along a characteristic line defined by Eq.5a, Eq.5a and Eq. 
6a), one samples the effects of the decay process on the water plug that left the starting section 
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(l=0) at time t0. Then, if that plug is associated with a concentration peak (i.e. if pu(t0) is a  
maximum) the sampled value in section l is analogously a maximum (see  solid line). On the 
contrary, this is false according to the dispersion model (observe the dashed line). Indeed, the 
sampled value may be an  intermediate value as in section l1 or even a nearly minimum value 
as in  section l2. This change of phase is justified intuitively by the fact that the dispersion ef-
fect mixes the water plugs as they travel downstream. A question is raised immediately: how 
can the calibration of the plug-flow model reproduce this phenomenon? Furthermore: the 
calibration of a plug-flow on data sampled along a characteristic line would be simply impos-
sible. Observe, in fact, that the value of ∆p is  positive in section zero (at time t0), nearly zero 
in section l1 (at  time t0+l1/v), while it comes back to being positive in section l3 (at  time 
t0+l3/v). No real value of the coefficient k exists that can  reproduce these data. 
 Analogously to the stationary case, this difficulty can fortunately be resolved by substitut-
ing the stream velocity v with a corrected velocity v*: the velocity at which the concentration 
wave travels downstream. In fact, when water samples are collected by an observer that moves 
downstream at velocity v*, the concentrations look as if the samples were collected from the 
same water plug. 
 The result obtained in the Appendix 3 is of great interest for the design of data gathering 
campaigns. In fact, it says that, in the case of a river characterized by an upstream condition 
that varies sinusoidally with frequency ω, we can collect data along a characteristic line de-
fined by Eq.5a and Eq.5a, where the velocity v is given the value v* computed by means of 
Eq. 23. So a plug-flow model calibrated by using these data is completely equivalent to a dis-
persion model. Moreover, the estimate of the coefficient k for this latter model can be ob-
tained from the estimate k* by solving Eq. 24 with respect to k. In conclusion, it seems we  
have reached the goal we posed since we have calibrated a model that  correctly describes a 
non-stationary condition. At the same time, we have also greatly reduced the number of sam-
ples to be collected since we have to collect data only on the characteristic line. 
 Although the conclusions reached in the previous statements are correct, the optimistic im-
pression they give is partially false for two reasons. First, as in the stationary case, the cor-
rected velocity v* does depend on the natural value k, which is in turn unknown. Hence, as 
proposed in the stationary case, we must rely on an a priori estimate ka of k, or better, deter-
mine a criterion that tells us when v*≅v. A second  and more serious drawback affects our re-
sult: v* and k* depend on the  frequency ω ! That means that v* and k* have a physical 
meaning only in the case of rigorously sinusoidally varying conditions, since only in that case 
does ω have a unique value. In fact, in the non-sinusoidal case, even if periodic, the value of ω
is not unique (think about a  Fourier's series development). Therefore, our result implies that 
we should use different velocities for different frequencies!  Even if the previous result is fully 
valid conceptually, it is of no practical use for model calibration, except when the conditions 
vary sinusoidally.  
 However, the conclusion would not be so bitter if the dependence of  v* and k* on ω were 
weak, i.e. if v* and k* did not vary significantly  with ω. To overcome both problems, let us 
determine under what condition  v*≅v and k*≅k.  
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 To determine this condition, let us develop the expression Eq. 23 and  Eq. 24 of v* and k*

into a Taylor's series with respect to ω and D in the neighborhood of D=ω=0 as a function of 
the dimension-less numbers previously introduced, and let us consider only the first and sec-
ond  order terms. We have:  

 v*(ω,D) ≅ v ( 1 + 2 – 2 2 + (2-12 + 60 2) W2 + o3 ) Eq.3a 

 k*(ω,D) ≅ k ( 1 + – 2 2 + ( -1 - 2 + 2 +12 2) W2 + o3 ) Eq.3b 

where W = ωD/v2 and o3 represents the sum of terms that are  infinitesimal of the third and 
higher order with D and ω. Note that W, as the Dobbins' number , is a pure number and can 
be formally obtained  from by substituting k with ω. Moreover, when the value of W is  
negligible, the effects of unsteadiness in conditions are negligible. In  that case, in fact, the 
expressions (23a,b) no longer depend on ω and  are such that the ratio (k*/v*) equals δ(k/v), 
with δ given by Eq.13a,  i.e. they satisfy the same condition that is valid in the stationary  
case. Therefore, the number W plays the same role in the periodic case  as played by in the 
stationary case, and we may state the following  
 

Statement 1. Dispersion can be assumed to be null if both and W are  negligible (e.g. lower 
than 0.01). In such a case, a natural plug  flow model (i.e. a model with k*=k and v*=v) is 
practically  equivalent to a dispersion model. 
 

It is interesting to note that, as Statement 1 requires the DC to be satisfied (i.e. < 0.01), 
and by recalling the definition of W, the  same statement can also be posed in an equivalent 
form:  
Statement 1a. Dispersion can be assumed to be null if is negligible  and ω ≤ k.  
 
That is equivalent to saying that the load must fluctuate "with a period  greater than the time 
1/k": a condition that has already been found by  Li [1972a].  Under the conditions of State-
ment 1, a natural plug-flow model can be adopted and thus the data gathering campaigns can 
be profitably organized according to the method of characteristics along the natural character-
istic lines.  
 When the DC is not satisfied (i.e. > 0.01) everything is not lost, since we may derive the 
following statement from Eq.3a: 
Statement 2: when only W is negligible (i.e. W < 0.01) a corrected plug  flow model can be 
adopted, where the corrected values k* and v* are  related to the natural values k and v by ex-
pressions (23a,b) with  W=0.  
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Even in that case, therefore, the data gathering campaigns can be organized along the charac-
teristic lines, but these must be calculated  on the basis of the corrected velocity v*, given by 
Eq.3a. However, as already noted, a vicious loop then arises. It can be resolved by  computing 
the characteristic line on the basis of an a priori estimate  of k and by evaluating the validity of 
the estimate a posteriori.  Furthermore, as expected, differently from the stationary case, it is  
now impossible to calibrate the model by collecting data along the  natural characteristic line, 
except when Statement 1 holds. In fact, we  may see from Eq.3a that it is never v*=v, except 
when k*=k, i.e. when  Statement 1 holds. 
 To conclude the periodic case, we would have to specify how the  conditions posed by the 
previous statements can be tested when the  boundary conditions do not vary sinusoidally. In 
fact in that case the frequency ω is not unique, so that the value of W is in turn not unique.  
Since the solution we have proposed to this problem is also valid for the general aperiodic 
case, we prefer to consider that case directly. 
 
5.3 Aperiodic case 
 From the previous discussion it is now easy to derive a criterion that is valid in the general 
case, that is, when conditions are non- stationary and aperiodic. Let ω' be the maximum fre-
quency, if existing, that is present in the Fourier's transform of the boundary condition,  or, 
when this is infinity, the highest significant frequency in the   power spectrum of the boundary 
condition. Then, from Statements 1 and 2 the following criterion follows that for obvious rea-
sons we propose to call the: 
Extended Dobbins' Criterion (EDC). When ω'D/v2 < 0.01  a corrected plug  flow model can be 
adopted where k* and v* are given by expressions  (23a,b) with W=0. Furthermore, when the 
classical Dobbins' criterion  is also satisfied (i.e. < 0.01) a natural plug-flow model (i.e. a  
model with k*=k and v*=v) is practically equivalent to a dispersion  model. 
 

It is interesting to have a practical feeling of when the EDC is  satisfied. Dobbins himself, 
in his 1964 paper, stated that "the highest  value that the writer has seen reported for D for a 
natural stream is  1.57 m2/s; if this were to apply in a stream where v were as low as 0.1  m/s 
and k as high as 2 d-1, the value of would be as low as 0.004." On  the basis of Dobbins' 
figures it appears that the DC is hardly violated  in the upper and medium parts of a river; and 
by adopting the same  figures it follows that the EDC is satisfied when ω' is lower than  
0.00006 s-1, or the period is longer than 4.4 hours. Dobbins based his  judgment on Taylor's 
[1954] and Elder's [1959] formulas for the  estimation of D. Later, Glover [1964] found that 
dispersion coefficients  in natural streams were likely to be 10 to 40 times higher than  pre-
dicted by the Taylor or Elder formulas. The lateral variation in stream velocity is the primary 
reason for the increased dispersion not  accounted for by Taylor and Elder. By taking into ac-
count Glover's  correction, the field of satisfaction of the DC then does not appear as  wide as 
Dobbins thought. It is, however, interesting to note that from  Statement 1a it follows that the 
EDC is satisfied when the DC is  satisfied and ω is lower than k. From the values of k re-
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ported by EPA  [1985], it turns out that the time 1/k rarely peaks as high as half a  day, thus 
the condition ω ≤ k appears to be sufficiently easily met. In conclusion, when the DC is satis-
fied, the EDC is almost always satisfied  too. (This is not true, of course, in the highly non pe-
riodic case of  the release of tracers or pollutant spillover.)    
 

5.4 More complex models 
 To conclude this section, we must stress that the EDC has so far  been derived only in the 
case of a mono-component system, e.g. BOD  alone. Rinaldi et al. [1979] showed that the 
classic Streeter-Phelps  BOD-DO model is equivalent to a couple of mono-component sys-
tems, the  first system governs the dynamics of the BOD concentration b, and the  second sys-
tem that of an "auxiliary" concentration a, defined as  

 a = d + k-k
k

21

1 b Eq. 4 

where d is the DO concentration, and k1 and k2 the deoxygenation and  reoxygenation rate co-
efficients respectively. Hence we know that the EDC  can be generalized to the 
Streeter-Phelps BOD-DO model with a simple  statement: the EDC must be verified for both 
k1 and k2. We do not know  what happens in the general case of n-coupled variables. A theo-
retical  development is formally difficult, but we do not see any structural  reasons that may 
cause the failure of the criterion, provided that the  corresponding model has linear source 
terms. 
 

6. A PROPOSAL FOR THE GENERAL CASE  
 What can be done when the EDC is not satisfied, or the source term  is not linear, or more 
than two variables are considered? One might  think that, to be safe, it would be easier to 
adopt tout court a  dispersion model, since it is conceptually "closer to reality". However,  as 
shown in Section 3, it is practically impossible to collect all the  data required for the calibra-
tion of such a model (except for the case  of the release of tracers or pollutant-spillover in 
which case the use  of a dispersion model is generally both feasible and necessary). The cor-
rect positioning of the problem is therefore one of a trade-off  between a conceptually satisfac-
tory model (a dispersion model), but one  which is very likely to be poorly calibrated, and a 
conceptually less  satisfactory model (a plug-flow model), but one which is probably well  
calibrated.  
 Finding an answer to this dilemma is not an easy task because it is generally impossible, or 
too cumbersome, to develop an analysis  analogous to the one previously exposed. Further-
more, as already noted, the complexity of a model is determined not only by the structure of 
the  transport term, but also by the number of state variables and the form of the source term S
(see Eq. 1a). Therefore, it seems perhaps  more attractive and feasible to develop a Decision 
Support System (DSS)  that can help in selecting the entire structure of the model to be  
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adopted and, consequently, in planning the necessary data gathering  campaigns. The DSS 
should allow one to specify the physical structure of  the system under consideration (hydrau-
lic characteristics, tributary  locations, load patterns, etc.), the number and locations of the  
possible instream sampling stations, the number of samples that can be  collected and ana-
lyzed in a given time interval due to budget  constraints, etc. Then, one could select a model 
structure to be adopted, for instance a plug-flow model, and simulate the calibration of the 
model. That is, first generate realistic space time patterns of the water quality indicators by 
means of a dispersion model, for which parameters θθθθ are given a priori values (for instance, 
taken from the  literature). Then, extract the dataset that could be collected in dedicated cam-
paigns from these patterns and calibrate the selected model  on this dataset. Hence, the cali-
brated model could be validated through a series of simulated experiments that consider the 
planning scenarios that could be analyzed. The above procedure should be repeated over a 
suitable range of values of the key variables, namely v, Q, D, the a priori estimates of the pa-
rameters θθθθ, and the dynamic characteristic of  the loads. 
 On the basis of such analysis, it may be found that given the operational constraints on the 
feasible campaigns, a complex, conceptually satisfactory model cannot be calibrated well 
enough, and that therefore it performs worse than a simpler model which, in turn, owing to its 
simplicity, may be conceptually unsatisfactory, but able to be calibrated satisfactorily.  Wood 
et al. [1990] demonstrated how an expert system can help in the calibration and simulation of 
a river quality model. We have not found, however, examples or proposals explicitly referring 
to the idea discussed above, i.e. to develop a DSS  (or expert system) to support the simulta-
neous choice of model structure and organization of the necessary campaigns. 
 

7. CONCLUSIONS  
 It was first noted that data gathering campaigns for model calibration constitute the key as-
pect in closing the gap between the theoretic development of river quality models and their 
application to real-world problems. Then, it was shown that the amount of data required to 
correctly carry out the calibration of a complete dispersion model in unsteady-state conditions 
is generally prohibitively large to be collected (except for the case of the release of tracers or 
pollutant- spillover). In order to find out under what conditions the data requirement can be 
reduced, three basic conditions have been  investigated:  
 a) stationary conditions: such conditions do not present  considerable difficulties in the 
calibration of a general dispersion  model, but are rarely met in practice. Although it does not 
have effective implications in approaches to the data gathering problem, we have shown that a 
linear plug-flow model always exists that is completely equivalent to a given linear dispersion 
model. The velocity and/or the parameters of the plug-flow model are to be corrected with re-
spect to their natural values (i.e. the values they have in the dispersion model) according to 
given formulas (see Eq.13a).  Moreover, when the classic Dobbins' criterion is satisfied, the 
corrections turn out to be negligible, i.e. the dispersion effects can be ignored.  
 b) periodic conditions: under such conditions the difficulties  presented by the data gather-
ing campaigns, when a dispersion model is  used, can still be afforded. However, we have 
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proved that in the presence of load conditions varying sinusoidally (but under stationary hy-
drologic conditions) the results found for the stationary case are still valid. It is, therefore, eas-
ier to calibrate a corrected plug-flow model (see Eq.3a), by taking advantage of the method of 
characteristics in the organization of the campaigns.  
 c) aperiodic conditions: in this case, the difficulties presented  by the data gathering cam-
paigns, when a dispersion model is used, cannot  be handled at all. We have proved that when 
a specific condition is met, there is a linear plug-flow model which is completely equivalent to 
a linear dispersion model. Owing to the formal analogy of this condition to the classic Dob-
bins' criterion, we proposed calling it the "Extended  Dobbins' Criterion" (EDC). When the 
EDC is met, it is possible and  strongly advisable to take advantage of the method of charac-
teristics in  the organization of the campaigns.  
 The EDC has been derived only for the case of a monocomponent, linear model, but we feel 
it can also be adopted for multicomponent,  non-linear models. In fact we do not perceive any 
structural reasons that prevent it being extended, even if the proof we developed cannot be ex-
tended technically to the non-linear case. In any case, in order to deal with more general cases, 
or with the case when the EDC is not met, it would be helpful to develop a Decision Support 
System that would allow us to "simulate the calibration" of different models (in particular, 
dispersion and plug-flow models), given the physical structure of the system at hand and any 
constraints imposed by the specific problem to be solved.  
 As a general conclusion, it can be stated that plug-flow models, and thus the method of 
characteristics, can be easily exploited under a much broader range of conditions than what 
was previously thought.  
 Examples of application of the previous theoretical conclusions will be presented in sepa-
rate papers in this Journal, in order to derive guidelines for action that could help the engineer-
ing judgement and the common sense in the analysis of real world cases.    
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APPENDIX 1 - THE METHOD OF CHARACTERISTICS  
 In this section the well known method of characteristics (see, for  instance, Di Toro [1969]) 
is briefly restated for the benefit of the  reader.    By assuming that dispersion is absent, i.e. 
D=0 (plug-flow system),  it is easy to see that Eq. 1a, together with the initial condition  pi(l)
and the upstream boundary condition pu(t), is completely  equivalent to the following set of 
total differential equations  
 τd

dt  =  1 
 Eq.5a  
 τd

dl  =  v(t,l)
Eq. 5b 

τd
dp = - A

l)(t,S q p + S
Eq. 5c 

with initial condition (see point A in Figure 2)  
 

Fig. 2. Representation of the spatial pattern of the (scalar) concentration p and characteristic lines. 
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 t(0) = 0,   l(0) = l0, p(0) = pi(l0) with  l0∈ L
Eq. 6a 

and (see point B in Figure 1)   
 t(0) = t0, l(0) = 0,   p(0) = pu(t0) with  t0∈ T

Eq. 6b 

The line (t(τ),l(τ),p(τ,l(τ)) in the space (t,l,p), solution of  Eq.5a, with initial condition Eq. 6a 
(or Eq. 6b), for a given value of l0 (or t0), lies completely on the surface p(t,l) (see Figure 1 
where p is  assumed to be one-dimensional) and constitutes what is called, in the  mathemati-
cal literature, a characteristic line. In the following,  however, we refer by use of this term (as 
is usual in hydrological  literature) to the projection (t(τ),l(τ)) of the above line on the plane  
(t,l), i.e. to the solution of Eq.5a and Eq.5a with initial  condition Eq. 6a (or Eq. 6b).  
 The variable τ is called flow time and represents the time elapsed from the instant t0. From 
the above it follows that the evolution of the biochemical process starting in the initial section 
l=0 (or l=l0) at the initial time t=t0 (or t=0) can be completely described along the correspond-
ing characteristic line independently from what happens along the nearby characteristic lines. 
From a physical point of view this is quite understandable. Since dispersion was assumed to 
be insignificant, plugs of water of infinitesimal thickness in the l-direction retain their identity 
as they flow downstream, so that what happens in each plug is independent from what hap-
pens in upstream and downstream plugs. This fact implies that to carry out a simulation along 
a characteristic line it is necessary to specify the load P(t, l), as well as the input functions v(t, 
l), Q(t, l),  Sq(t, l), T(t, l), along that line only, and only a point-wise value for the initial condi-
tion is  needed (this last factor also plays the role of the upstream boundary  condition).  
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APPENDIX 2 -  DERIVATION OF THE DOBBIN’S CRITERION BY SYSTEM 
THEORY 
 
We derive the DC from the structure of the two models by means of a proof that outlines how 
the criterion applies only to stationary conditions (this proof was originally presented in Ri-
naldi et al. [1979]). The proof can be applied to a complete BOD-DO linear model (see Ri-
naldi et al. [1979]). For simplicity, however, we make reference to a simplified scalar version 
of Eq. 1a in which, apart from the assumption that the source term S is linear in the concentra-
tion p (as in the classical BOD equation of Streeter-Phelps' model) the following positions are 
taken: the fate of the concentration p is assumed to be independent from other compounds and 
populations in the ecosystem; the dispersion coefficient D is assumed to be space invariant; no 
water inflow term Sq is considered; and finally, no loads are present downstream from the ini-
tial section. We now proceed as follows. Under a hypothesis of stationary conditions, we 
transform the simplified version of Eq. 1a into a second order linear lumped-parameter sys-
tem. We then show that the response of this system to a boundary condition p(0)  (that is the 
initial condition for the lumped parameter system), in the  absence of any downstream loads, 
is identical to the response of a plug- flow model, provided that a corrected velocity v* and/or 
a corrected  decay coefficient k* are used in the latter, instead of the natural  velocity v and 
the natural decay coefficient k. Finally, we show that  when the DC is satisfied, then v*≅v and 
k*≅k, i.e. the natural plug-flow  model, which is the model obtained from the dispersion 
model by setting  D=0, gives nearly correct results (in other words, dispersion can be  as-
sumed to be zero). 
 From the simplified scalar version of Eq. 1ait is evident that one can derive the following 
system which, under stationary conditions, is equivalent to Eq. 1a: 

 dl
dp  = g

Eq.7a 
 dl

dg  = D
k p + D

v g
Eq. 7b 

where g=g(l) is the gradient of the concentration p(l), and k is the  coefficient of the linear 
source term, i.e.: S = -kp.  
 

From Eq. 1a, it is also evident that one can conclude that  the natural plug-flow model is 
given by: 

 dl
dp  = v

k p
Eq. 8a 

 
Then a corrected plug-flow model has the form: 

 dl
dp  = v

k
*

*
p Eq. 8b 
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Note now that system Eq.7a is a simple linear system of the form:  

 dl
dx = Fx          

 Eq.9a 
with:  

 x = g(l)
p(l)

 F = v/Dk/D
10

Eq. 9b 

The eigenvalues of the matrix F are given by: 

 λ1 = 2D
v ( 1 + v

kD 4+1 2 ) ; λ2 = 2D
v ( 1 - v

kD 4+1 2 )

Eq. 9c 
 
Remember that, by definition, an eigenvector x(i) associated with an  eigenvalue λi is a vector 
such that Fx(i) = λix(i). Then, if the state  x(l) of the system at a point l is proportional to x(i),
i.e.  x(l)=cx(i), where c is a scalar constant, we have  dx(l)/dl = λix(l); that  is, in the state 
space, the tangent to the state trajectory is  proportional to the value of the state itself. This 
implies that in the  state space there are two particular straight lines through the origin  which 
are associated with the two eigenvalues   Eq.9ac, and which correspond  to trajec-
tories of the system. The trajectory associated with λ1 is directed outwards from the origin, 
since λ1>0, while the trajectory associated with λ2 is directed towards the origin since λ2<0. 
Thus, the path of p and of its gradient g along the river is that of a saddle point in state space. 
 Since we assumed that there are no loads downstream of the initial  section (l=0), the fol-
lowing must hold:  
 liml→∞ p(l) = 0

Eq. 10 
but this can be obtained if and only if the initial state is  proportional to the eigenvector asso-
ciated with λ2 , which implies that: 

 g(l) = λ2 p(l) for all  l>0       
 Eq. 11 
Thus, from Eq.7a and  Eq. 11: 

 dl
dp  = λ2 p

Eq.12 
By comparing  Eq.12 with Eq. 8ab the following conclusion  can be drawn: a corrected 
plug-flow model (Eq. 8ab) is equivalent to the  dispersion model Eq.7a, provided that the ratio 
k*/v* equals -λ2. This can be obtained, for example, by setting   
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 k* = k and   v* = v/δ, with   δ = v2kD/
1-v

kD 4+1
2

2

Eq.13a 
or, equally, by setting  

 k* = δ k and   v* = v
Eq. 14b 

or by any other combination such that (k*/v*)= δ (k/v). In any case, the correction factor δ is a 
function of the dimensionless number = kD/v2, that from this point on is called Dobbins' 
number.
A Taylor's series of δ as a series of powers of D then gives 

 δ = 1 - + 2 2 + o3

Eq. 14c 
where o3 represents the sum of terms that are infinitesimal of the third  and higher orders with 

. Eq.13a justifies Dobbins' criterion, since under condition Eq. 2 is negligible and there-
fore δ nearly equals 1. Thus, when the DC is fulfilled, dispersion is negligible in the sense that 
a natural plug-flow model is as good operationally as a dispersion  model. The data gathering 
campaign can therefore be organized along a characteristic line defined by equations Eq.5a 
and Eq.5ab (natural  characteristic line).  
 Notice that when the corrected velocity v*, given by Eq.13a, is substituted into the  natural 
river velocity v in the definition of the characteristic line  (see Eq.5a), the corrected plug-flow 
model produces the same  answer as the dispersion model. In conclusion, under stationary 
conditions, even when the DC is not fulfilled, we can always adopt the corrected velocity v* ,
then collect  data along the corresponding (corrected) characteristic line and finally  calibrate a 
plug-flow model. Moreover, since the natural value k for the reaction rate coefficient through 
Eq.13a is assumed for both the corrected plug-flow and the dispersion models, it follows that 
the best estimate for k* computed in the plug-flow model is also the best  estimate for k in the 
dispersion model. 
 It is important to observe, however, that in Eq.13a the corrected  velocity v* does depend 
on the value of k, but this latter is a priori  unknown. It therefore seems that we are in a vi-
cious loop, since on the basis of the value of v* one can design the data gathering campaign, 
but it is only on the basis of the collected data that the value of k can be estimated upon which 
the value of v* depends. The loop can be broken by calculating v*(ka) on the basis of an a pri-
ori estimate ka for k, and by verifying a posteriori that the velocity v*(

∧
k ), computed with the a 

posteriori estimate 
∧
k of k, does not significantly differ from v*(ka).  The possible error in-

curred in such an a priori estimate v*(ka) of v*(
∧
k ) is often smaller than the normal error pre-

sent in any velocity measurement. The reason now emerges for the classic use of the DC: if 
condition Eq. 2 is satisfied for a sufficiently wide range of a priori estimates of k then we are 
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sufficiently sure that v*≅v both a priori and a posteriori.  
 The cut in the loop is, however, a hasty solution. In fact, if we consider the alternative po-
sition expressed by Eq.13ab, we perceive that another, more effective, procedure is available. 
We may collect data along the "natural" characteristic line (i.e. the line computed using  the 
natural river velocity v) and estimate the corrected coefficient k*. Then, we can obtain the 
natural value of k from the first of the Eq.13ab.  There is a simple, structural reason for the ex-
istence of this alternative procedure: i.e., under stationary conditions the value of the concen-
trations in a given section does not change over time. Therefore,  the actual time of 
measurement, and hence the adopted value of the  velocity, cannot prevent an estimate of k. 
But the same reasoning  already tells us that an analogous procedure cannot hold in the  aperi-
odic case, as we can see in the following.  
 Incidentally, it may be of interest to evaluate the error one would produce by adopting the 
concentration pp(l) computed using the natural  plug-flow model instead of the concentration 
pd(l) computed by the  associated dispersion model. To that end, consider the ratio R of these 
concentrations. As a function of l it is given by  

 R = 1 - (k/v)l + v2
4v)+kl(kl

2
2 + o3

As one can see, R is a function of l, but it approaches the unity as approaches zero. 
 

A last point deserves some comment. The reader has probably noted that the structure of the 
previous analysis is based on the assumption that the initial condition p0 is the same for both 
models. However, he (she) may observe that this assumption is incorrect. It is fair to compare 
the responses of the two models when they are subject to the same load, but the same load 
does not imply the same initial condition. In fact, the dispersion phenomenon takes place in 
the downstream as well as in the upstream direction, while the latter is excluded by our as-
sumption. In reality, a given load will produce a lower initial concentration in the presence of 
dispersion than in the opposite case. Therefore, the previous analysis has to be modified to 
take account of this phenomenon by considering the model response to a concentrated input. 
So as not to bore the reader with tedious calculations, the derivation of the right expression of 
δ is not described here and only its Taylor's series is given:  

 δ = 1 + kl
v ln( ) - (1 + kl

v ) + (2+ 2
3

kl
v ) 2 + o3

Eq.14d 
By comparing Eq.13ac with Eq.13ad one can note that the difference between  the two expres-
sions of δ decreases hyperbolically with l; i.e. the  expression Eq.13ac that is derived by ne-
glecting the dispersion effect on  the initial condition (and is therefore independent of l), is 
nothing  but the limit of the valid expression Eq.13ad for l going to infinity.  However, this 
difference vanishes after a few hundred meters (l is in meters and appears in the denominator), 
so that in this paper we definitively disregard the effect of dispersion on the initial condition.  
 



European Water Management Online 
Official Publication of the European Water Association (EWA) 
© EWA 2003 

Andrea Nardini, Rodolfo Soncini-Sessa:  Application of River Water Quality Models: The Role of Dispersion in 
the Model Calibration    Page 28 

 
APPENDIX 3  - TECHNICALITIES CONCERNING THE PERIODIC CASE 
 

To rich the conclusion anticipated in the text, we proceed as follows: under the hypothesis 
of periodic conditions (more precisely, sinusoidal conditions), we first compute the amplitude 
and phase for the two models. We then define the corrected velocity v* as the velocity that 
makes the plug-flow model phase equal to the dispersion model phase. We then determine the 
corrected coefficient k* as that value of the coefficient in the corrected plug-flow model (i.e. 
the plug-flow model where the value of  velocity is assumed to be v*) that equals the ampli-
tudes of the  frequency responses from the two models. Finally, we determine under what 
conditions v* and k* nearly equal the natural values.  
 Before proceeding with the analytical development, let us clarify that we have restricted the 
analysis to the same simplified version of Eq. 1a considered in the stationary case (see above). 
Moreover, it must be recognized that, as Eq. 1a is a partial derivative equation, the associated 
transfer function and hence the frequency response, depend on the initial and boundary condi-
tions, as well as on the load pattern. This is because the transfer function is a "one- dimen-
sional" (time only) object, while the system under consideration is a "two dimensional" (time 
and space) object. For simplicity, we therefore consider just the basic situation where the 
boundary condition  pu(t) is periodic and the load P(l,t) as well as the initial condition  pi(l,0) 
are null for all positive l and t. 
 Let us apply the Laplace operator L[⋅] to the simplified version of  Eq. 1a, by denoting the 
Laplace transform of p(t,l) with P(s,l),  where s is the complex variable: 

 sP + v dl
dP  - D ld

Pd
2

2
= - kP

Eq.14a 
with boundary conditions  

 P(0,s) = Pu(s) = L[pu(t)]        
 Eq.14b 
 liml→∞ P(s,l) = 0

Eq.14c 
The second order differential Eq.14a can be split into the  following two first order differential 
equations 

 dl
dP  = G

Eq.15a 
 dl

dG  =  D
s+k P + D

v G
Eq. 15b 

where G(s,l) = L[g(t,l)]. Note now that the system  Eq.15a is formally similar to Eq.7a. 
Hence from the results obtained for the stationary case: 
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 dl
dP  =   λ2(s) P

Eq. 16 
where  

 λ2(s) = 2D
v ( 1 - v

s)D+(k4+1 2 )

Eq. 17 
Therefore, the Laplace transform of p(t,l) in section l is  given by  

 P(s,l) = Pu(s) eλ2(s) l

Eq. 18 
and the transfer function MD(s,l) that specifies the input-output  relationship between pu(t) and 
p(t,l) according to the dispersion model  Eq.14a, is given by 

 MD(s,l) = eλ2(s) l

Eq. 19 
 
Let us now consider the corrected plug-flow model. Deriving the transfer  function is straight-
forward 

 MP(s,l) = e -(k* + s) l/v* 

Eq. 20 
 

System Theory tells us that the amplitude R(l,ω) and the phase  Ψ(l,ω) of the frequency re-
sponse are nothing but the modulo and the  argument of the transfer function when it is evalu-
ated for s=iω (where: i = 1- 1).  Because of the presence of the square root in  Eq. 17, the 
complex function λ2(s) may assume two alternative (complex) values which are characterized 
by the same modulo and arguments but differ by π. Only one of these values has a negative 
real part (i.e. it is the stable eigenvalue), and since we are interested in only the stable eigen-
value it is this unique value we have to consider (the other one is nothing  but the unstable ei-
genvalue). Then, for the dispersion model, we have  

 RD(l,ω) = exp [ D
vl

2 ( 1 - ( 2
1 ( ( α2 +β2)1/2 + α ))1/2 )  ] 

Eq.21a 

 ΨD(l,ω) = - 2D
vl  ( )αβα -)+(2

1 1/222

Eq.21b 
with  

 α = 1 + 4 v
Dk
2 and  β = 4 v

D
2 ω

Eq.21c 
and for the plug-flow model:  
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RP(l,ω) = exp [ - (k*/v*)l ]
Eq.22a 

 ΨP(l,ω) = - (ω/v* ) l
Eq.22b 

Now, as stated, we can determine the corrected velocity v* by imposing  ΨP(l,ω) = ΨD(l,ω), 
thus obtaining 

 v*(ω,D) = 
( )αβα

ω
-)+(2

1v
D2

1/222

Eq. 23 
The corrected coefficient k* is analogously computed by imposing RP(l,ω) = RD(l,ω) and 
hence 

 k*(ω,D) = ω
( )

( )αβα

αβα
-)+(2

1
1-+)+(2

1

1/222

1/222

Eq. 24 
 

Let us make some comments on these results. Expressions Eq. 23 and  Eq. 24 are necessar-
ily consistent with our previous results. In fact, for D going to zero they give v*=v and k*=k, 
and for ω going to zero (i.e. in the stationary case) they are such that the ratio (k*/v*) equals 
δ(k/v), with δ given by Eq.13a. Moreover, it is of interest to observe that for k=0 (i.e. for con-
servative substances) v*=v and k*=Dω2/v2 + o4 where o4 represents the sum of terms that are 
infinitesimal of the  fourth and higher orders with ω. That means that the equivalent plug- 
flow model indicates a corrected coefficient k* that is not zero when ω is not zero. This 
slightly surprising result can easily be understood by observing that under non-stationary con-
ditions the concentration of a substance, even if conservative, would not be constant in space. 
 Therefore, the dispersion phenomenon affects the concentration pattern.  A corrected 
plug-flow model can interpret this modification only as corresponding to a non-conservative 
substance and therefore k* must result as being different from zero.  
 We have fully solved the task we posed ourselves at the beginning of this section: to prove 
that a corrected velocity v* and a corrected coefficient k* exist such that, no matter what the 
values of D and ω, the output response from a corrected plug-flow model equals that of the 
dispersion model. Moreover, note that v* and k* do not depend on l, thus the result is valid for 
any section.  
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